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Abstract

This paper empirically evaluates the effects of college admissions policies on
high school students’ academic effort. I build a rank-order tournament model
where high school students decide their level of effort and whether or not to take
the college admissions test, considering how those decisions affect their future uni-
versity admissions chances. Using administrative Chilean data for the 2009 college
admissions process, I structurally estimate the parameters of the model. Two
affirmative action policies are simulated: (a) SES-quota system, which imposes
the population’s socioeconomic group (SES) distribution for each university; (b)
increasing the weight of high school GPA in the admission final score. These sim-
ulations support the claim that affirmative action in college admission may boost
the amount of academic effort exerted by high school students. I also find that
while increasing the weight of high school GPA is more effective in boosting stu-
dents’ academic effort in high school, the SES-quota system is more efficient in
allocating the best students to the best universities.
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1 Introduction

There is a continuing debate about how to reduce socio-economic and racial segregation
in universities. To this end, many countries have affirmative action programs, intended
to increase college admission rates for targeted populations (e.g., specific races or SES).
In general, existing evaluations of these programs focus on the application rates of stu-
dents benefiting from affirmative action, and the academic performance of those who
are admitted.1 However, the existing evaluations generally assume high school student
behavior to be exogenous, which overlooks the potential impacts of these programs on
the motivation of high school students.

Given that high school students may consider the impact of their effort levels on their
university admissions chances and react to different admissions policies accordingly, the
goal of this paper is to empirically address the effect of college admissions on high school
student academic effort in response to policy changes. In particular, I estimate the
structural relationship between college admissions policies, which determine the proba-
bilities of being admitted by different universities, and the student’s effort decision in
high school. Then I use the estimated model to simulate the effect of different affirmative
action policies on the academic effort of high school students.

I model the college admissions process and high school behavior in a static fashion, where
students decide how much academic effort to make during high school, and whether to
take the national college admissions test, which is mandatory for college applicants. The
exerted effort positively impacts the expected performance in high school and on the
college admissions test. In the model, there are different universities, each one offering
two majors: scientific and humanities. Future payoff (after college graduation) depends
on the university quality and the major studied. Because in the model universities have
fixed and exogenous amount of seats for each major, the admissions process works as
a rank-order tournament, such that the access of each student to universities depends
on her individual performance relative to the performance of all the other students.2

Admissions policies are based on a linear combination of high school grades and test
scores that form a final score such that the equilibrium of the model is characterized
by a minimum final score to be admitted in each major/university, named final-score
cutoff. Intuitively, this final-score cutoff vector has a similar role as prices in a Walrasian
equilibrium, in the sense that its value is set such that the number of students admitted
to each university is equal to its number of seats, and that conditional on this vector
every student is making an optimal decision about taking the test and about how much

1See, for example, Arcidiacono (2005), Bowen and Bok (1998), Card and Krueger (2005), Epple
et al. (2006), and Long (2004). A summary of the literature before 2000 can be found in Holzer and
Neumark (2000); for a more recent survey, see Arcidiacono et al. (2016).

2To read more about the theoretical implications of rank order tournament, see Lazear and Rosen
(1981).
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academic effort to make.

The model is estimated using Chilean administrative data for the 2009 college admissions
process. The database, which has 146, 319 observations, contains individual information
such as the scores of tests taken between 8th and 12th grade, measures of academic
effort (e.g., attendance and GPA) and learning skills, and characteristics of families and
of primary and secondary schools. Moreover, the database also includes Ministry of
Education’s data from tax declarations which links individual post graduation wages to
students’ scores on the university admission test. The exceptional features and richness
of this database are crucial in estimating the structural relationship between high school
students’ effort and their probabilities of admission to universities with different qualities.

The model estimation is carried out in two stages. In the first stage, I estimate all the
parameters of the test production function by two-stage least squares, since I have more
than one measure for the endogenous variable (i.e., high school student effort). In the
second stage, using some parameters estimated in the first stage, I estimate the util-
ity parameters, the distribution of the unobserved learning skills, and the parameters
of the measurement equations by a maximum likelihood procedure. I follow this ap-
proach mainly because most of the parameters are estimated in the first stage, leaving
just a few parameters to be estimated in the second stage, which is more time consum-
ing. Because from data I observe the final-score cutoffs (the equilibrium object), in the
estimation the model can be approached as a single agent problem, which simplifies es-
timation and makes this approach robust to any multiple equilibria potential problem.
Notice, however, that in all my simulation exercises, to study the fit of the model or to
study the effect of counterfactual experiments, I do need to solve the equilibrium of the
rank-tournament model, by finding the final-score cutoffs of equilibrium. Overall, the
simulation of the estimated model fits most of the data features very well.

To study what the impact of college admissions policies is on the academic effort of
high school students, two types of affirmative action policies are simulated. The first
one is a SES-quota system, which imposes the population’s SES distribution for each
university. In the second policy experiment, I simulate what happens if the GPA weight
is increased, which in practice implies that there is an increased probability of attending
better universities for those students attending low income high schools. This is due to
the fact that while the high school GPA of each student is to some extent relative to
her classmates, the national test scores are relative to the student’s national cohort and
therefore capture the difference in high school quality, which is highly correlated with
income.

There are several lessons from these counterfactual experiments. (1) Average effort sig-
nificantly increases as opportunities are equalized across different socioeconomic groups
(SES). (2) This leads to a moderate improvement in high school students’ performances,
which is relatively impactful for some groups. (3) Although the effects on performance
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are moderate, the evidence supports the idea that modeling effort and the decision to
take the admission test are important in order to anticipate what would happen with the
main features of the college admissions system (e.g., student allocation).(4) The highest
change in exerted effort comes from those students who also change their decision about
taking the college admissions test. (5) Neither of these policies importantly increases the
percentage of students taking the national college admissions test, which is consistent
with the fact that in this policy implementation there are winners and losers. However,
there are relevant variations in who is taking such a test; in particular, this percentage
increases for low-income students and those who have a higher level of learning skills. (6)
Although increasing the GPA weight is more effective on boosting students’ academic ef-
fort in high school, the SES-quota system is more capable of allocating the best students
to the best universities, conditional on delivering the same universities’ socioeconomic
composition.

It is worth mentioning that there is nothing in the model that ensures that any design of
an affirmative action policy would positively impact the average of high school academic
effort. In the model, the incentives for exerting effort are highly non-linear. In one
extreme case, students exert the highest effort when their expected final scores are very
close to a final-score cutoff. In the other extreme, students exert the lowest level of effort
when effort does not change their college admission performance, either because they
have no chance to be admitted to a university or because they have very high probability
of being admitted to a top university, without making any additional effort. Yet these
two extreme cases are more probable when students have very different backgrounds. In
this context, the affirmative action policies studied in this paper have a positive impact
on average effort because they make students to compete in more homogeneous groups
without breaking the connection between admission probabilities and effort.

Regarding the literature, there are four empirical papers that, in the cotenxt of affrmative
action policies, take students’ behavior in high school as endogenous, as I do in this
paper.3 The first three, Cotton et al. (2014), Domina (2007) and Ferman and Assunçâo
(2011) present some reduced form estimations that address how changes in affirmative
action policies may change students’ behavior in high school.4 In the fourth paper, which
is the closest to my research, Hickman (2013) models the behavior of U.S. high school
students as a function of their future chances of being admitted to different universities.

In particular, Cotton et al. (2014) using experimental data from a high school tournament

3In a related paper, Hastings et al. (2012) show how motivation can change students’ exerted effort,
in particular that the opportunity to attend a better high school has positive and significant effects on
both student attendance and test scores. Theoretically and motivated by U.S. legal changes, a series of
papers, e.g., Chan and Eyster (2003); Fryer et al. (2008); and Hickman (2011) have focused on how the
prohibition of explicit consideration of race in the admissions process may be quite inefficient if colleges
still have some preferences toward minorities. Another interesting theoretical paper is Gall et al. (2013).

4In the case of Cotton et al. (2014) they base their analysis on a theoretical paper, namely, Bodoh-
Creed and Hickman (2014).
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that resembles affirmative action policies, show how affirmative action not only may
promote racial diversity on college campuses, but may also narrow achievement gaps
between advantage and disadvantage groups by motivating higher levels of pre-college
human capital investment on the part of under-represented minority students. In the
same line, Domina (2007), using panel data for Texan high schools between 1993 and
2002, shows evidence that Texas’ post-Hopwood higher education policies boosts high
school students’ academic engagement at public schools.5 Opposing this is Ferman and
Assunçâo (2011), who used difference-in-difference techniques and quasi-experimental
data from Brazilian secondary education, where political forces abruptly imposed an
admissions quota for two of Rio de Janeiro’s top public universities. They estimate that
the quota altered incentives, thus producing a 5.5% decrease in standardized test scores
among the favored group, widening the achievement gap by 25%.

These studies show how different ways of increasing the admissions probabilities of the
most segregated groups may have different impacts on high school students’ behavior.
However, a structural approach is required in order to know which admissions policies
accomplish an efficient combination of increased diversity and correct incentives. To
address this issue, Hickman (2013) uses U.S. data to structurally estimate a model of
college admissions where the admissions test is an endogenous variable, using empirical
tools borrowed from auction literature.6 One of his main findings is that current affir-
mative action policies narrow the achievement and enrollment gaps, but a color blind
system results in higher academic achievement in the overall student population. His
other finding is that the quota system prohibited by U.S. law is superior to both of
the other policies in three dimensions: it produces the highest academic performance; it
substantially narrows the achievement gap; and, by design, it closes the enrollment gap
completely.

Beyond technicalities, the main differences between my paper and Hickman (2013) are:
(1) Given that I have data for the student regardless if she did or did not take the college
admissions test, I can see how different admissions rules change the number of people who
apply to college, whereas his approach is conditional on admission. Furthermore, it turns
out that in my estimation and, hence, in my simulations this decision plays a central
role. (2) Given that I observe measures of effort and a set of variables which determine
the student performance in my data, the impact of the effort decision is established in a
more transparent way, and it is possible to compare the magnitude of the effort’s effect
with that of the other determinants. Note, however, the differences in our approaches are

5These policies include a guarantee that all students who finished in the top 10% of their high
school class will be admitted to their chosen public university. Cullen et al. (2013) show that, after the
implementation of this Texan policy, among the subset of students with both motive and opportunity
for strategic high school choice, at least 5% enroll in a different high school to improve the chances of
being in the top 10%.

6The model is described in detail in Hickman (2011).
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mainly motivated by different access to data and the particular traits in the institutional
design of the two educational systems (American and Chilean).

In this context, my paper has three main contributions. First, by modeling how univer-
sities’ admissions systems can change incentives to exert more effort from high school
students, this paper shows that increasing equality in opportunities may lead to a boost
in this average effort. Moreover, given that the results of this paper are that the most
significant changes in academic effort come from those students who also change their
decision about to take the university admission test, this paper represents a relevant
improvement with respect to the previous literature that studies the effort of high school
students conditional on attending college (e.g., Hickman (2013)). Second, to the best
of my knowledge, this is the first paper that estimates a rank-order tournament with
heterogeneous ability contestants. Indeed, Vukina and Zheng (2007) present the first
estimation of a structural model of an empirically observed rank-order tournament as
a strategic game with private information and homogeneous ability contestants. As
the authors posit, the structural estimation of rank-order tournament games with het-
erogeneous ability contestants is cumbersome as this assumption results in equilibrium
strategies that are nonsymmetric. In the case of my model, the complexity of the problem
is simplified by assuming that there exists a finite set of individual types, with a contin-
uum mass of students of each type, realistic assumption in the context of the Chilean
admission system. Third, the paper exploits the interaction between economic theory
and factor analysis models in the identification and estimation of the model.

The paper proceeds as follows. Section 2 details the features of the model. Section 3
describes the Chilean college admissions process, explaining the main features of the
data. Section 4 discusses the empirical implementation of the model and proves the
identification of the model’s parameters. Section 5 presents the estimation procedure.
In Section 6, the model fit is discussed along with other aspects of the estimation results.
Section 7 describes the counterfactual experiments results. Finally, Section 8 concludes
and discusses future research.

2 The Model

The aim of this model is to capture in a rank-tournament framework how college admis-
sions policies may affect the effort exerted by high school students. The basic idea of
the model is that students compete for the (fixed and pre-determined) slots in the best
universities through their performance in high school GPA and admission test scores.
Because for each individual what matters is her relative performance with respect to
the other students, in principle the rank-tournament models with heterogeneous agents
are very difficult to solve. However, I simplify the solution of the model by assuming
that there exists a finite set of individual types, with a continuum mass of student of
each type. This assumption has two important consequences: 1) students can anticipate
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without uncertainty what will be the minimum score to be admitted at each university
tier, and 2) there is not a strategic consideration in students’ optimization. As It will
be clear when I describe the admission system to college in Chile, this is a reasonable
assumption in the context where this model is implemented.

In this model students have two decisions to make: whether or not to take the college
admissions test, a necessary input for university admittance; and how much effort to
make during high school.7 The exerted effort is denoted by the continuos variable, e,
and to take the college admissions test is denoted by the binary variable, TCAT , such
that TCAT is equal to one is she takes the test and to zero, otherwise. These are
modelled as two simultaneous decisions. The exerted effort positively impacts expected
high school and college admissions test performance.8 For those students who decide
to take the college admissions test, admissions policies consider both high school grades
and the test score, such that higher measures lead to admittance by better universities.

Each student i is characterized by her individual characteristics and the characteristics
of the high school she is attending. One of the individual characteristics is her preference
over two group of college majors: scientific or humanities. All these variables, includ-
ing the preference for a major, are exogenously determined. Because the distinction is
not relevant and to simplify the exposition, throughout the paper I do not distinguish
between individual and high school characteristics, and I refer to all them as individual
characteristics. Individuals characteristics are denoted by {X,Z, λ}: X is a vector in-
cluding all the observable characteristics but the preference for a major, which is variable
Z; λ is the student learning skill, a scalar variable that is unobservable by the econome-
trician, but known by the student. As presented below, λ is an important variable that
impacts all the tests and scores, and the cost of taking the admission test. Thus, it is
an unobserved variable that allows to have correlation among tests scores and individual
decisions, conditional on observables. Although from the model’s perspective it does
not make any difference what is and is not observed by the econometrician, since it is
relevant in the empirical section, I introduce this notation in the model description to
keep all notations consistent across the paper.

It is assumed that there is a finite space of individual characteristics (i.e., X , Z, λ are

7This paper is connected to the literature that models discrete-continuous choices. See, for instance,
Hanemann (1984), Dubin and McFadden (1984), Chintagunta (1993), and Dillon and Gupta (1996).

8There is a debate about the impact of student academic effort on student performance. For ex-
ample, Schuman et al. (1985) report four different major investigations and several minor ones over a
decade, none of which were very successful in yielding the hypothesized substantial association between
the amount of study and GPA. Such an unexpected result is, from different angles, contradicted by
Eckstein and Wolpin (1999), Eren and Henderson (2008), Rau and Durand (2000), Stinebrickner and
Stinebrickner (2004), and Stinebrickner and Stinebrickner (2008). Related to this literature is the dif-
ficulty of having a proper model for cognitive production function. In this regard, Todd and Wolpin
(2007) find the most support for the value-added models, particularly if those models include some
lagged input variables (see also Todd and Wolpin (2003)).
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discrete) where all of the students who share the same characteristics belong to the
same student type. Let t(i) ∈ {1, 2, ..., T} denote the type of student i; such that,
∀ i, j | t(i) = t(j): Xt(i) = Xt(j), Zt(i) = Zt(j), and λt(i) = λt(j). The mass of type t
students is denoted by mt. As discussed bellow, the finite space with a continum of
students assumption implies that even though this is a rank-tournament model, there is
not any strategic consideration in students’ behavior.

There are N − 1 university tiers, each one offering two majors: scientific and humani-
ties. Because they have different quality levels, each university n implies some specific
future pay-off for each major z, {Rz

1, R
z
2, ..., R

z
N}, such that Rz

n+1 > Rz
n ∀ n, z and Rz

1

is the pay-off for those who prefer major z, but they were not admitted to any college
(because they did not try or their final score was too low). Since individual types include

the information about the preferred major, R
Z(t(i))
n denotes the payoff that individual i

obtains if she attends university n.

Each university/major (n/z) has a fixed and exogenous amount of seats Sz
n (Sz

1 > 0 is the
residual: the mass of students preferring major z who are not admitted to any college,
i.e.,

∑
tm

z
t =

∑N

δ=1 S
z
δ ). Given these slots, the admissions process works as a rank-order

tournament in which students decide their effort (ei) and whether or not to take the
college admissions test (TCATi), taking into account the effort cost, the test’s fixed cost
(FCi ∼ N(FCt(i), σ

2
fc)), how much they value future payoffs, and their chances of being

admitted by each university in their prefered major. Notice that fixed cost’s normality
implies negative “cost” for some students. This assumption simplifies the equilibrium
solution. That said, the existence of negative costs for some students is equivalent of the
cost being equal to zero, namely, all of them will take the admission test.

Let FSi be the type i college admissions final score, such that:

FSi = Ppm ∗ PMi + Ppv ∗ PVi + Pg ∗GPAi, (1)

where PMi, PVi and GPAi are the math test, the verbal test, and the high school
GPA, respectively; whereas Ppm, Ppv and Pg are the associated weights. The production
function of these tests are:

PMi = βpm
0 +Xt(i)β

pm
1 + eiβ

pm
2 + λt(i)β

pm
3 + εpmi , (2)

PVi = βpv
0 +Xt(i)β

pv
1 + eiβ

pv
2 + λt(i)β

pv
3 + εpvi , (3)

GPAi = βg
0 +Xt(i)β

g
1 + eiβ

g
2 + λt(i)β

g
3 + εgi . (4)
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(εpmi εpvi εgi ) ∼ N(0,Γ), E[εki |Xt(i), λt(i)] = 0, ∀ k ∈ {pm, pv, g}, and

Γ =




σ2
pm 0 0
0 σ2

pv 0
0 0 σ2

g


 .

Thus, λ is a single-dimensional unobserved variable, which allows for –conditional on X
and e– correlated errors across the performance equations for GPA, PM, and PV, despite
the assumption of the independence of their shocks.

Given the number of people who actually take the college admissions test, the seats
offered by each university/major, and the final score distribution of those students, the
vector rz ({rz2, rz3, ..., rzN}) represents the final minimum score needed to be admitted by
each university tier in major z. Throughout the paper, I denote this vector as the final-

score cutoff. Hence, the students who are going to university n in major z are those who
prefer major z and have a final score greater than or equal to rzn and smaller than rzn+1.
The former inequality is given by the admissions rule, whereas the latter is due to utility
maximization, since it is always suboptimal for students to attend university n for major
z when their final score is greater than rzn+1.

Importantly, vector rz is what characterize the equilibrium in the market of major z.
As it is formalized later, an equilibrium requires that conditional on this vector rz, all
students preferring major z are optimizing their effort decision and their decision about
taking the admission test. Moreover, this vector rz has to be the result of these optimally
students’ decision.

I assume that students have lexicographic preferences. In particular, those who prefer a
major in science (humanities) will not major in humanities (science) no matter what the
payoff. This implies that scientific and humanities majors work as separated markets.
Therefore, an equilibrium for each major can be defined in a isolated way. Notice that
this is a simplification in respect to reality where although students may have strong
preferences about majors, they may apply to a less preferred major if by doing so they
can attend a better university. I consider this separated market by major assumption in
order to have a tractable solution to my model.

The utility function, for those who choose to not take the college admissions test, is given
by:

U0
t(i)(e) = R

Z(t(i))
1 + θ1GPA(et(i))− θ

t(i)
2

e2

2
, (5)

For those who decide to take the college admissions test, the utility is:
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U1
t(i)(e) =

N∑

n=1

RZ(t(i))
n 1(rZ(t(i))

n ≤ FS(et(i)) < r
Z(t(i))
n+1 ) + θ1GPA(et(i))−FCi − θ

t(i)
2

e2

2
, (6)

where r1 = −∞ and 1(A) is an indicator function that takes the value of 1 when A
is true and 0 otherwise. In both utilities the parameter associated with future pay-off
is normalized to one and θ1 and θ

t(i)
2 represent the importance of high school student

performance and the cost of effort, respectively. The cost of effort is quadratic and
heterogeneous across individuals.

There are two considerations to be made about students’ utility function. On one hand,
students make their effort decision before the realization of the GPA, PM , and PV
shocks. Therefore, they maximize expected utility. The only private information used
in students’ decisions is the value of FCi. The distributions of GPA, PM , PV and FC
are common knowledge. On the other hand, all information about the other students
that each one needs in order to make her effort decision are the values of r. Moreover,
due to the fact that each student anticipates the behavior of other students and that
there is a continuum of individuals of each type, the value of the vector r is predicted
without uncertainty, even though the individual final score is a random variable. The
latter reveals the importance of the assumption on the continuum of individuals of each
type, namely, due to this assumption the decision of each student does not have strategic
considerations.

2.1 Student’s Problem

Because at the time of their decision making, all the students of the same type only differ
in the cost of taking the test conditional on taking the test, students of the same type
exert the same level of effort. Hence, given a vector rz(t) (i.e., the final-score cutoff for
major z) , the optimization problem for those students of type t who do and do not take
the national college admissions test can be written as, respectively:9

max
e≥0

E[U0
t (e)] ⇔ max

e≥0

{
θ1b1e− θt2

e2

2

}
,

max
e≥0

E[U1
t (e)] ⇔ max

e≥0

{
N−1∑

n=1

(
Rz(t)

n − R
z(t)
n+1

)
Φ

(
r
z(t)
n+1 − a1e− a0t

ση

)
+ θ1b1e− θt2

e2

2

}
.

(7)

9Φ denotes the standard normal distribution function. In both cases, I do not include the elements
of the expected utility that are not a function of effort.
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Where:

a0t = Ppm ∗ (βpm
0 +Xtβ

pm
1 + λtβ

pm
3 ) + Ppv ∗ (βpv

0 +Xtβ
pv
1 + λtβ

pv
3 ) + Pg ∗ (βg

0 +Xtβ
g
1 + λtβ

g
3),

a1 = Ppm ∗ βpm
2 + Ppv ∗ βpv

2 + Pg ∗ βg
2 ,

b0t = βg
0 +Xtβ

g
1 + λtβ

g
3 ,

b1 = βg
2 ,

ηi = Ppm ∗ εpmi + Ppv ∗ εpvi + Pg ∗ εgi ,
σ2
η = V ar(ηi).

The final effort decision for students i, who belong to type t (i.e. t(i) = t) is êi =
(1 − TCATi) ∗ ê0t + TCATi ∗ ê1t , where TCATi is the decision of individual i on taking
the test:

TCATi =

{
1 if maxe≥0E[U1

i (e)] ≥ maxe≥0E[U0
i (e)],

0 if maxe≥0E[U1
i (e)] < maxe≥0E[U0

i (e)].
(8)

Notice that E[U1
t(i)(e)] + FCi > E[U0

t(i)(e)] for any individual and for any level of effort,
therefore without the test’s fixed cost, all students would take the test.

The solution of the problem for student i, who belongs to type t and prefers major z(t),
is characterized by the following first order conditions:

For those who do not take the college admissions test:

ê0t =
θ1b1
θt2

. (9)

For those who take the college admissions test:10

ê1t =
1

θt2

[
N−1∑

n=1

(
R

z(t)
n+1 − Rz(t)

n

)
φ

(
r
z(t)
n+1 − a1ê

1
t − a0t

ση

)
a1
ση

+ θ1b1

]
, (10)

⇒

TCATi =

{
1 if Dt ≥ FCi

0 if Dt < FCi,
(11)

10φ denotes the standard normal density.
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Dt =

(
N−1∑

n=1

(
Rz(t)

n − R
z(t)
n+1

)
Φ

(
r
z(t)
n+1 − a1ê

1
t − a0t

ση

))
+ (R

z(t)
N − R

z(t)
1 )

+ θ1b1(ê
1
t − ê0t )− θi2

(ê1t )
2 − (ê0t )

2

2
.

It is direct that E[U0
t ] is strictly concave. A sufficient condition for strict concavity of

E[U1
t ] is given by (R

z(t)
N −R

z(t)
1 )a21φ(1) < σ2

ηθ
t
2, ∀t (Appendix A.1). The intuition of this

condition is that in order to have only one local maximum for students’ maximization, it
is required that the impact of effort on expected utility is not too high relative to the cost
of effort and the variance of final score. When this condition is fulfilled, as it happens
given the estimated parameters of this model, the solution to (10) is unique and ê1t is
continuous in r, which is always the case for ê0t . This continuity condition is important
for the equilibrium analysis. That said, it is possible to ensure existence of a solution for
the student’s problem even without this condition, as I prove by Lemma 1.

Lemma 1: Given a vector rz(t), the student’s problem (7) has at least one interior
solution.

Proof: Lets define the function f such that:

f(e) = e− 1

θt2

[
N−1∑

n=1

(
R

z(t)
n+1 −Rz(t)

n

)
φ

(
r
z(t)
n+1 − a1e− a0t

ση

)
a1
ση

+ θ1b1

]
.

In this context, proving the existence of one interior solution is equivalent to showing
that there exists at least one value of e that is not equal to zero, such that f(e) = 0.
To do so, I first notice that f(e) is continuous and well defined for any value of e. On
one hand, because φ is a density (i.e. cannot be negative), θ1b1 > 0, and θt2 > 0; it is
true that f(0) < 0. On the other hand, because φ(x) is bounded by one, for any value
of x, it is also true that lime→∞ f(e) = −∞. Therefore, by continuity, there exists at
least one value of e, not equal to zero, such that f(e) = 0. Moreover, if we define e as
e ≡ θ1b1 = limr→−∞ f(ê1t ) and e as e ≡ a1

ση

(
Rt

n+1 − Rt
n

)
+ θ1b1, we know that it should

be the case that ê1t ∈ [e, e]. �

2.2 Equilibrium

Let m̃t be the mass of students of type t who take the college admissions test, then:

m̃t = mtΦ

(
Dt − FCt

σfc

)
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As we stated above, even though students just observe their own fixed cost realization,
this mass can be predicted without uncertainty by the students due to the continuum of
individuals in each type.

An equilibrium in the market of major z is given by a set of vectors {ê0t}t∈{t|z(t)=z},
{ê1t}t∈{t|z(t)=z} and r̂z, such that:

• Given r̂z, ∀ i | t(i) ∈ {t|z(t) = z}:

– ê0t =
θ1
θt2
b1,

– ê1t =
1
θt2

[∑N−1
n=1

(
R

z(t)
n+1 −R

z(t)
n

)
φ
(

r̂zn+1−a1ê
1
t−a0t

ση

)
a1
ση

+ θ1b1

]
,

– D̂t(i) = (E[U1
i (ê

1
t , r̂

z)] + FCi)− E[U0
i (ê

0
t )].

• ∀ n = 1, ..., N − 1 :

N∑

δ=n+1

Sδ =
∑

t

m̃t

[
1− Φ

(
r̂zn+1 − ê1ta1 − a0t

ση

)]

=
∑

t

mtΦ

(
D̂t − FCt

σfc

)[
1− Φ

(
r̂zn+1 − ê1ta1 − a0t

ση

)]
.

Notice that in this setup the vector r̂z has a similar role as prices in a Walrasian equi-
librium, in the sense that its value is set such that the number of students admitted to
each university is equal to its number of seats.

Lemma 2: If ∀ i | t(i) = t : (R
z(t)
N −R

z(t)
1 ) <

(
ση

a1

)2
θt2
φ(1)

and
∑

tmtΦ

(
(R

z(t)
N

−R
z(t)
1 )−FCt

σfc

)
>

∑N
δ=2 Sδ, there exists at least one equilibrium in market of z major.

Proved in Appendix A.1.

The sufficient conditions for existence have clear interpretations. On one hand, the
first condition implies that the effort decision cannot be overly important for the final
score determination (given by the ratio a1

ση
) and that the differences in the future pay-

offs cannot be overly relevant (given by 1
θt2
(R

z(t)
N − R

z(t)
1 )). Hence, to be sure about the

equilibrium existence requires that the impact of the effort on the utility is moderate. On
the other hand, the second condition is more innocuous and establishes that the national
test’s fixed cost cannot be too large in comparison with future pay-offs. Otherwise, even
when all the elements of r are close to −∞, there are not enough students taking the
national test to fill all of the seats offered by each university.

13



Lemma 3: In the case where N = 2, the equilibrium is unique when it exists.

Proved in Appendix A.1.

Although there is not a proof for N > 2, in Appendix A.1 I present a result which limits
the potential extent of multiple equilibria. In particular, it narrows the possibility of hav-
ing high and low effort equilibria. In addition to that, in the empirical implementation of
the model, I solve the equilibrium with very different starting points for r, characterizing
high and low effort equilibria, and in all these cases the algorithm converges to the same
value of r.

It is worth mentioning that the potential lack of uniqueness is not an issue in the identi-
fication of the model’s parameters. In fact, to calculate the likelihood function it is only
necessary to solve the student’s problem as opposed to the equilibrium (the values of r).
The latter is not calculated in the estimation given that I observe the final-score cutoff
(r) in the data. Thus, in the case of having more than one equilibrium, the estimation
procedure selects the one that the students actually played. The usefulness of narrowing
the potential extent of multiple equilibria is for counterfactual experiments.

In sum, this model characterizes a rank-order tournament with heterogeneous contes-
tants. As it is clear from the first order conditions of the student problem, the effort
decision is type specific, namely, it depends on X , Z, and λ. It is also unique when the
first condition of Lemma 2 is fulfilled. Furthermore, the decision about taking the test
can be different for students belonging to the same type, given that this decision depends
on the realization of the admission test’ fixed cost. Thus, even though two students of
the same type (i.e. same X , Z, and λ) would exert the same level of effort in the case
that they make the same decision about the test, they can have different level of exerted
effort to the extent that one of them decide to take the test and the other one does not.
Given these effort and admission test decisions, which are very heterogeneous, and the
other (exogenous) components that determine the final score, students are sorted across
universities by their final scores.

3 The Chilean System for College Admissions and

Description of the Data

In the Chilean educational system, students can continue their studies after high school at
different tertiary institutions, some selective (the best and most prestigious universities)
and some not so (including some universities and technical institutions). In 2009, 29%
of 18 to 25 year-olds were attending some type of tertiary institution.11

11CASEN 2009 (Chilean survey for socioeconomic characteristics).
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The Chilean university system is highly structured: after knowing their final admissions
score (a linear combination of high school GPA and admission test scores), students
apply for a particular major at a particular university. They can apply for more than
one major/university combination. Each university has an admission quota, a fixed
number of seats, for each major.

As considered in the model, to be admitted to a selective university, the student must take
a national college admissions test (PSU); the math and verbal sections are mandatory
while certain majors require additional tests. Most of the selective universities have an
explicit formula to calculate the final score (different weights for the PSU scores and
GPA are considered). Thus selection is simply based on the final score ranking.

For the 2009 admissions process, among the 212, 656 students who finished high school,
56, 437 (27%) did not take the college admissions test and 156, 219 (73%) did. Note that
the national test can be taken yearly and those who change majors must retest, so a
percentage of those taking the college admissions test finished their secondary studies
more than one year before. In this paper, I only use data for those students who finished
high school in 2008, and those who didn’t repeat any grades between 2004 and 2008. For
the cohort, those students represent 84.5% (179, 725 of 212, 656) of the total.

There are four sources of information in this paper; the first three are linked through an
individual ID.12

• PSU: the national test for college admissions. These are census data provided by
the DEMRE (Department of Educational Evaluation, Measurement and Record-
ing).

• RECH: Ministry of Education’s data. It includes information for all high school
students including annual average attendance for each student, their GPA, and all
high schools in which each student was enrolled. There is an identification number
for each high school that can be used to link this RECH data with many other
sources of high school information (including SIMCE data).

• SIMCE 2004 and 2006: Nation-wide tests taken by students in eighth grade
(14 years old) and 10th grade (16 years old). These tests are designed to measure
the quality of the system, are public information, and do not have any direct
consequences for the tested students. During the week of the test, parents are
surveyed to characterize students’ families. From that survey, I have information
on students; performance, some proxy measures of effort and learning skills, and
characteristics of their families, primary and secondary schools.

12The Ministry of Education of Chile has all individual information with RUT (Chilean national ID),
but for confidentiality reasons this data is given to the researchers with a new ID, which is useful to
link the different data bases provided by the Ministry, but does not link with other databases at an
individual level.
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• Futuro Laboral: this is a project of the Chilean Ministry of Education that
follows individuals for the first few years after graduation from higher education
programs. The panel dataset matches tax returns – provided by Chile’s Internal
Revenue Service – with transcripts including students’ majors and colleges, and
their score on the PAA (Prueba de admision universitaria). The PAA was the
national test for college admissions until 2002, when it was replaced by the PSU
(they are very similar and have the same scale). The database only considers those
who graduated from universities. Income information is available between the
years 1996 and 2005, and contains individuals in Chile who had positive earnings
between those years, including even those who were exempt from taxes. I use 2001
graduating class.13

The wage measured in the sample is the annual income received from jobs and
services and does not include self-employment income. The final sample consists
of 19,870 individuals. Notice that these individuals were in the labor market when
those in the sample used to estimate the model were attending the end of primary
education and the start of secondary education. To the extent that my model
seeks to understand the academic effort exerted by students during their secondary
education (between 2005 and 2008), it makes sense they were observing wages
between 2001 and 2005 as an estimation of their potential future wages based on
major and university attended.

From this source of information, I can estimate, using individual data, the rela-
tionship between the national test for college admissions and wage profile.

The final database, that put the first three sources of information together, contains
146, 319 observations, where the difference between this number and 179, 725 (who did
not repeat any grade between 2004 and 2008) is mainly for two reasons: (1) lack of data
for the 2004 SIMCE for some students, and/or (2) lack of socioeconomic information
for some students. The vector X (which determines the test score production functions)
includes: mother’s education, father’s education, the primary and high schools type
attended by the students, dummies for rural condition of the primary and secondary
schools, and the primary and high schools SES. There are five SES categories, which are
defined by the Ministry of Education of Chile, such that the higher is the SES number
of the school, the wealthier are its students. In Appendix B there is a description and
statistics of the variables considered in this paper, showing the differences between the
population and the estimation sample. Although the differences between them are not
economically important, in general they are statistically significant. In particular, the
estimation sample has more students coming from higher socieconomic groups.

13This database is a sub sample of the database used by Braga and Bordon (2017). They study
whether employers use university prestige as a signal of workers’ unobservable productivity.
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Note that in this empirical implementation all independent variables that determine
students’ effort decision and the their decision about taking admission test are discrete.
Having only discrete independent variables implies that I can group students who share
the same characteristics, defining student types. This feature of my database is consistent
with the model, and its assumption about a mass of students of each type. Moreover, it
helps to speed up the estimation, given that effort decisions, more precisely ê0i and ê1i ,
are the same for all students belonging to the same type. In concrete, there are 4, 484
types (grouping 146, 319 students), whose average size is 32.63, with a maximum size of
828.

Few decisions should be made to adjust data contents to model simplifications. In the
model, universities differ in quality and there are two majors: scientific and humanities.
To proxy the major preference, in the case of the Futuro Laboral database, I define those
who score higher in the math than in the verbal PSU, as scientific major students, and
those scoring higher in verbal as humanities major students. Then, I assume that for
each major there are eight university tiers and one residual (for those who prefer major
z and either do not take the college admissions test or have a final score below rz1). To
define these tiers, I group students according their preferences in majors and calculate
the quintiles of the final scores, dividing the fourth quintile into two and fifth into three.
In other words, I divide the groups of students using the percentiles 20, 40, 60, 70, 80, 87,
and 93; of the final score. To have finer groups at the end of the final score distribution,
is to capture the more steeply relationship between wages and final score values which
is observed as the final scores increase. Then, Rz

n, n ∈ {2, 3, ..., 9}, is calculated as the
mean of the monthly income a few years after graduating for students who preferred
major z and whose final score belongs to tier n. Rz

1 is calculated as the mean of the
monthly income of the students who preferred major z and whose final score is below
450, which in Chile is the minimum final score to apply to selective universities.

The calculation of rzn and Sz
n, n ∈ {1, 2, ..., 9}, uses the estimation sample (146, 319 ob-

servations). Since in this sample there is information on the performance on both verbal
and math in the 8th grade standardized test (the SIMCE), I use the relative performance
in this test to define the major preferences for these 146, 319 students. Moreover, I de-
fine the weights of the different tests on the final score function by approximating what
is observed in real life, such that in scientific major the weights are 0.4 for the math
PSU, 0.2 for the verbal PSU, and 0.4 for GPA, and in humanities major the weights
are 0.2 for the math PSU, 0.4 for the verbal PSU, and 0.4 for GPA. Then to calculate
Sz
n, n ∈ {2, 3, ..., 9}, I take all of the students who prefer major z and whose final score

is above 450 points and consider the same percentiles used to calculate Rz: 20, 40, 60,
70, 80, 87, and 93. Sz

1 is the residual and can be also calculated as the total number of
students who prefer major z and whose final score is below 450 or who decided not to
take the admission test. Finally, rzn is calculated as the minimum final score for those
students who attend university n.
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Table 1 summarizes all these calculations, showing the estimated relationship between
the national test for college admissions and wage profile. Note the relevant difference
between the wage profile of the students who perform better in math (i.e., scientific
major), versus those who perform better in verbal (i.e., humanities major). This table
also shows the more steeply relationship between wages and final score values as the
final score increases. In fact, even though higher university tiers have fewer students, the
increases in payoffs from one tier to another one are similar to the increases between the
first tiers, which include more students.

Notice that income data are used in estimation primarily as a means of extracting or-
dinal information on college quality. In this context, observed and unobserved student
characteristics determine payoffs only indirectly through improving high school grades
(and therefore college placement). Regarding this, there is a vast literature, with mixed
evidence, that studies the impact of college and its quality on future earnings, e.g.,
Brewer et al. (1999); Dale and Krueger (2002); Dale and Krueger (2002); James et al.
(1989); and (with Chilean data) Reyes et al. (2013). It is worth noting that while the
literature has focused its attention on how to control for student and college selection,
this is not relevant in my approach because the important feature in my model is not
how much students are actually going to earn, but their beliefs on the impact of different
universities on their future earnings.
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Table 1: Universities’ Payoffs as Function of Students’ Final Scores

r: final-score
University (Scientific major) R: payoff cutoff S: seats

1 (Not admitted to college) 0.59 0 Residual
2 0.90 450 10,565
3 1.10 499 10,643
4 1.23 541 10,616
5 1.33 585 5,304
6 1.43 610 5,308
7 1.57 640 3,555
8 1.69 665 3,549
9 1.81 701 3,514

University (Humanities major) R r S

1 (Not admitted to college) 0.67 0 Residual
2 0.69 450 7,340
3 0.83 482 7,338
4 0.89 515 7,372
5 1.05 551 3,667
6 1.16 573 3,684
7 1.27 601 2,451
8 1.42 625 2,467
9 1.64 661 2,438

Note: The payoffs are monthly wages and are measured in thousands of US dollars. The final
score (which determines the cutoff) is a linear combination of test scores and high school GPA:
0.4 ∗ (Math PSU) + 0.2 ∗ (V erbal PSU) + 0.4 ∗ GPA, in the case of scientific major, and
0.2 ∗ (Math PSU)+ 0.4 ∗ (V erbal PSU)+ 0.4 ∗GPA, en the case of humanities major. These
variables have a mean of 550 and an standard deviation of 100 points.
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4 Empirical Specification and Identification

Following the factor model literature, I assume that there are three unobserved variables
for which I have measures (i.e., proxies): λi (learning skills), epi (student effort at pri-
mary school), and ehi (student effort at secondary school). The last is modeled in the
paper, while the first two are treated as unobserved heterogeneity. Regarding this, I
take advantage of the panel data in order to have measures of learning skills and student
effort at primary school before the decisions modeled in this paper are made, namely,
high school effort and whether to take the admission test.

A key element of the model are the learning skills, which are assumed to be scalar,
time invariant, and independent of x. This is an unobserved variable that impacts all
of the tests results and scores, and the cost of taking the admission test (discussed
below). Then, as usual in the structural estimation approach, this unobserved variable
allows me to have correlation among tests, scores, and students’ decisions, conditional
on observables. The innovation in this paper is that the identification of the distribution
of this unobserved variable takes insights from structural estimation approach and factor
model literature.

Besides the functions that determine the final score, I consider several measures and
tests, which, in the context of latent variables, are useful to identify the parameters of
interest: the final score determinants, i.e., 2009 national test for college admissions (PM,
the math test; and PV the verbal test) and high school GPA; the earlier standardized test
scores (SIMCEs, 2004 and 2006); and some direct measures of primary and high school
effort (Mep and Meh, respectively), along with measures for the unobserved learning
skills (Mλp). The direct learning skills measures (Mλp) are: whether the student re-
peated at least one primary school grade; and the student’s answer to a set of questions
about her ability to understand hard subjects, self-confidence in performing well in ex-

ams, determination to set learning goals.14 The direct primary school effort measures
(Mep) are attendance in 8th grade; and self-reported perception about her effort at 8th
grade including exerts effort at hard subjects, try hard to learn, looks for additional in-

formation, math and study intensity. The direct high school effort measures (Meh) are:
attendance at 10th grade and self-reported perception about her effort at 8th grade, such
as: Exert effort, Study at home, use textbook and calculators at home. Statistics of all
these measures are summarized at Appendix B.

To emphasize, the direct measures (Mep, Meh, and Mλp) are assumed to be functions
of the latent variable that they measure, and of exogenous variables. In other words,
this direct measures are only function of one latent variable at the same time, which
is an exclusion restriction that ensures identification. Thus, for example, learning skills
does not affect high school attendance directly, but through its effect on academic effort.

14In the context of the papers. Cunha et al. (2010) and Heckman et al. (2006), these learning skill
variables would be closer to non-cognitive skills given the measures available.
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That said, it should be noticed that I also have other measures such as the standardized
high school test scores, which are functions of two latent variables (high school effort and
student learning skills).

Let i denote the individual, j the measure, and J the total number of measures that I
have for each unobserved variables, the empirical implementation is characterized by the
following equations:

Final Score Determinants:

PMi = βpm
0 + xh

i β
pm
1 + ehi β

pm
2 + λiβ

pm
3 + εpmi , ∀i s.t. TCATi = 1, (12)

PVi = βpv
0 + xh

i β
pv
1 + ehi β

pv
2 + λiβ

pv
3 + εpvi , ∀i s.t. TCATi = 1, (13)

GPAh
i = βgh

0 + xh
i β

gh
1 + ehi β

gh
2 + λiβ

gh
3 + εghi . (14)

High school performance and effort measurements:

SIMCEh
ji = βsjh

0 + xh
i β

sjh
1 + ehi β

sjh
2 + λiβ

sjh
3 + εsjhi , j ∈ {verbal,math}, (15)

Mehji = xejh
i βejh

1 + ehi α
ejh + εejhi , j ∈ {1, ..., Jeh} Jeh ≥ 2. (16)

Primary school performance, learning skill and effort measurements:

SIMCEp
ji = βsjp

0 +xp
iβ

sjp
1 +epiβ

sjp
2 +λiβ

sjp
3 +εsjpi , j ∈ {verbal,math, natural science, social science},

(17)

GPAp
i = βgp

0 + xp
iβ

gp
1 + epiβ

gp
2 + λiβ

gp
3 + εgpi , (18)

Mepji = xejp
i βejp

1 + epiα
ejp + εejpi , j ∈ {1, ..., Jep} Jep ≥ 2, (19)

Mλp
ji = xλjp

i βλjp
1 + λiα

λjp + ελjpi , j ∈ {1, ..., Jλ} Jλ ≥ 2. (20)

As emphasized above, it is assumed that all the εis are normally and independently
distributed, with one exception. The identification strategy requires that at least one
measurement to be a linear function of each unobservable. Because all learning skills
measures are binaries, I assume a linear probability model for Mλp

1. In consequence,
ελ1pi is not normal distributed. Notice that independency implies that, conditional on
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observables, the correlation across equations is only given by the unobserved skill het-
erogeneity.

Following factor analysis literature, I normalize αe1h = αe1p = αλ1p = 1. As Cunha and
Heckman (2008) stress, because the tests only contain ordinal information, it is more
appropriate to anchor the scale of the latent factors using measures with an interpretable
metric, such as the ones used in this paper. They are a binary variable that takes the value
of 1 if the student had repeated at least one year and 0 otherwise (measuring learning
skills), the attendance rate for the last year of primary school (measuring primary school
academic effort), and the mean of school attendance over the four years of secondary
school (measuring secondary school academic effort). Using attendance as a measure of
effort is a common practice. see for example Hastings et al. (2012). For simplicity, I also
assume that xλjp

i , xejp
i and xp

i do not have elements in common, and the same for xejh
i

and xh
i .

As described in the model section, the effort cost (θ
t(i)
2 ) is individual specific. This allows

different effort decisions among students who are not taking the college admissions test,
remember that ê0t =

θ1

θ
t(i)
2

b1. In the SIMCE 2004, the students are asked about how much

do they like to study math and language. The possible answers are: strongly agree,
agree, disagree, and strongly disagree. Given that few people choose the last category,
I use three values: 1 if the student strongly agrees, 2 if the student agrees, and 3 if the
student disagrees or strongly disagrees. Then, I define a variable LikeStudy with three
possible values. It takes a value of one if a student strongly agrees that she likes to study
math and language, two if a student agrees that she likes to study math or language,
and three if a student disagrees or strongly disagrees that she likes to study math and
language. Given this, the cost of effort parameter is defined as:

θ
t(i)
2 = exp(θ02 + θ12 ∗ 1(LikeStudyt(i) = 2) + θ22 ∗ 1(LikeStudyt(i) = 3)).

Which implies that θ
t(i)
2 is equal to exp(θ02) when the student strongly agrees with the

statement: I enjoy the study of math and language.

The mean for the cost of taking the test (FC) is also individual specific. Given the
structure of the model, a natural approach is to make this mean a function of the
unobserved learning skill variable (λ). Moreover, this approach gives more flexibility to
the model to fit the data, since it allows a – conditional on observables – correlation
between high school GPA and the decision to take the admission test. Concretely, the
mean cost is equal to:

FCt(i) = FC0 + FC1 ∗ 1(λt(i) Group 2) + FC2 ∗ 1(λt(i) Group 3) + FC3 ∗ 1(λt(i) Group 4).
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4.1 Identification

To the extent that the final goal of this paper is to perform counterfactuals related to
the college admissions process, the objects which must be identified for this analysis are
{βpm, βpv, βgh}, {V ar(εpmi ), V ar(εpvi ), V ar(εghi )}, {θ, FC(λ), σfc, ση} and the distribution
of λ. The identification strategy has three steps. First, I identify the final score’s ex-
pectation and variance.Notice that if V ar(εpmi ) , V ar(εpvi ) and V ar(εghi ) are identified,
then ση is also identified. Second, I non-parametrically identify the distribution of learn-
ing skills. Third, I identify the utility parameters from different moments of the effort
measurements.

Before proceeding with the proof, I list all the assumptions that it requires. Although
all these conditions have been already mentioned; they are stated here to provide a big
picture about what supports identification. Each time that an assumption is needed, it
is noted in parentheses.

INDME: All the errors of the measurement equations are independent of each other and of
any other error in the model.

INDPF: All the errors for the production functions of the components of the final score are
independent of each other and of any other error in the model. In other words,
conditional on X and e, the correlation across different tests is only driven by the
unobserved learning skill characteristic (λ).

AtL2M: There are at least two measures for each unobserved variable (i.e., effort at primary
school, effort at high school, and learning skill).

TPfL: The test production functions are linear in the parameters.

EXAD: The effort decision and the decision about taking the admission tests are made
before the realization of the test production functions’ shocks.

INDL: λ is independent of all the errors in the model.

SCOF: The objective function for those students who do take the admission test is strictly

concave, which can be ensured by ∀ i : θ1(RN − R1) <
(

ση

a1

)2
1

φ(1)
.

Step 1, the final score’s expectation and variance:

Let Ti ∈ {PMi, PVi, GPAh
i }. By (TPfL) and (AtL2M), it is clear that:
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Ti = βT
0 + xh

i β
T
1 + βT

2 (Meh1i − xe1h
i βe1h

1 ) + βT
3 (Mλp

1 − xλ1p
i βλ1p

1 )− (βT
2 ε

e1h
i + βT

3 ε
λ1p
i ) + εTi

Thus, defining δTi = εTi − (βT
2 ε

e1h
i + βT

3 ε
λ1p
i ), it is possible to construct the following

moment conditions:15 E[δTi |xh
i ] = 0, E[δTi |xe1h

i ] = 0, E[δTi |xλ1p
i ] = 0, E[δTi |Meh2i] = 0

and E[δTi |Mλp
2i] = 0, where the last two moment conditions are possible because of

(AtL2M). From these moment conditions, βT , βe1h and βλ1p are identified. Therefore,
{βpm, βpv, βgh} are also identified. This also implies that all the parameters involved in
a0i, a1 and b1 are identified.

Given that {βpm, βpv, βgh} are identified, {var(δpmi ), var(δpvi ), var(δghi )} are also identi-
fied. Moreover, to show the identification of {var(εpmi ), var(εpvi ), var(εghi )} notice that:

cov(Ti − βT
0 − xh

i β
T
1 − βT

2 (Meh1i − xe1h
i βe1h

1 )− βT
3 (Mλp

1 − xλ1p
i βλ1p

1 ),Meh1i − xe1h
i βe1h

1 ) =

cov(εTi − (βT
2 ε

e1h
i + βT

3 ε
λ1p
i ), ehi + εe1hi ) = −βT

2 var(ε
e1h
i ).

cov(Ti − βT
0 − xh

i β
T
1 − βT

2 (Meh1i − xe1h
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These results imply that var(εe1hi ) and var(ελ1hi ) are identified, and consequently var(εpmi ),
var(εpvi ), and var(εghi ) are also identified, where cov(εTi −(βT

2 ε
e1h
i +βT

3 ε
λ1p
i ), ehi ) = 0 is be-

cause of (EXAD) and cov(εTi − (βT
2 ε

e1h
i +βT

3 ε
λ1p
i ), λp

i ) = 0 is because of (INDL). Along
the same lines, by (INDME), it is proven that cov(εe1hi , εe1hi ) = 0 and cov(εe1hi , ελ1pi ) = 0;
and by (INDME) or (INDPF), it is ensured that cov(εTi , ε

e1h
i ) = 0 and cov(εTi , ε

λ1p
i ) =

0, ∀ T .

Step 2, the distribution of learning skills and high school student’s effort:

The nonparametric identification of f(λ) and f(eh|x) can be proven following an anal-
ysis similar to Cunha and Heckman (2008). First, proceeding in a similar fashion as
before, with two measures for each latent variable (AtL2M), it is possible to identify
{βsjp

0 , βsjp
1 , βsjp

2 , βsjp
3 , βe1p

1 } for any j ∈ {verbal,math, natural science, social science}.
Hence, defining ̂SIMCE

p

ji = (SIMCEp
ji−βsjp

0 −xp
iβ

sjp
1 −βsjp

2 (Mep1i−xe1p
i βe1p

1 )) 1

β
sjp
3

and

ε̂sjpi = (εsjpi − βsjp
2 εe1pi ) 1

β
sjp
3

, it follows that:

15By (EXAD), because the decisions are taken before the shocks’ realization, such decisions are

independent of the errors; hence, when Ti ∈ {PMi, PVi}: E[δTi |Meh2i,Mλ
p
2i, x

h
i , x

e1h
i , x

λ1p
i , TCATi =

1] = E[δTi |Meh2i,Mλ
p
2i, x

h
i , x

e1h
i , x

λ1p
i ]. Thus, there is no selection bias.
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̂SIMCE
p

ji = λi + ε̂sjpi

Mλp
ji − xλ1p

i βλ1p
1 = λi + ελ1pi

Therefore, because ε̂sjpi and ελ1pi are independent of each other and with respect to λi

(due to (INDME) and (INDL)), the distribution of λ is identified (Cunha and Heck-
man (2008)). This result comes from Kotlarski’s Theorem. Moreover, the identification
can be achieved under much weaker conditions regarding measurement errors. Indeed,
independence is not necessary, see Cunha et al. (2010).

Along the same lines, it is possible to prove the nonparametric identification of f(eh|x).
As in the case of f(λ), the identification of f(eh|x) rests on the existence of two measures
of eh.

Step 3, the parameters of the utility function:

Once the distribution of λ is identified, it is possible to identify the utility parameters.16

First, notice that if Meh1i − εe1hi = ei, where ei is the effort of individual i. Let e =
g(xi, a(λi), b, θ1, θ

t
2, ση) be the implicit relation resulting from the first order condition

(10), which can be characterized as a function due to assumption (SCOF). Thus, based
on the first order conditions and for any t, it is the case that:

E[Meh1i − εe1hi |TCATi = 0, t(i) = t] = θ1
θt2
b1,

E[Meh1i − εe1hi |TCATi = 1, t(i) = t] =
∫
λ
g(xi, a(λ), b, θ1, θ

t
2, ση)f(λ|TCAT = 1, t)dλ.

It should be noticed that the strength and flexibility of this proof is given by the fact
that the distribution of λ (and eh|x) are nonparametrically identified.

Finally, the identification of FC(λ) and σfc comes from

Pr(TCATi = 1|Di(λi, xi), FC(λi), σfc) = Φ

(
Di(λi, xi)− FC(λi)

σfc

)

⇒
∫

λ

Pr(TCATi = 1|Di(λ, xi), FC(λ), σfc)f(λ)dλ =

∫

λ

Φ

(
Di(λ, xi)− FC(λ)

σfc

)
f(λ)dλ.

Indeed, by varying Di(λ, xi), it is possible to obtain the value of σfc, because Φ is a
monotonic function. Moreover, by fixing Di(λ, xi) for any particular value, it is possible

to find the value of FC(λ)
σfc

, which implies the identification of FC(λ).

16The identification of f(eh|x) gives another way to identify the utility parameters.
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5 Estimation

The estimation is carried out in two steps. In the first step, following the identification
analysis presented above and the standard approach to dealing with measurement error
in independent variables (both effort and learning skills), I can consistently estimate all
the parameters of the test equations ((12), (13), (14), (15) and (17)) by a two-stage least
square. In the first stage, one measure of each latent variable is regressed against all the
other measures: high school attendance rate (the average between 9th and 12th grade)
against the other measures of high school academic effort; primary school attendance
rate (8th grade) against the other measures of primary school academic effort; and
grade repetition before 8th grade against all the other learning skills measures. In the
second stage, all the scores that measure the primary (secondary) education student
performance are regressed against X (e.g., gender, socioeconomic groups, high school
or primary school type) and the projection of the (high) primary school academic effort
and learning skill that come from the first stage.

In the second step, using relevant parameters from the first step as inputs, I estimate the
utility parameters, the distribution of the unobserved learning skills, and the parameters
of the measurement equations by maximum likelihood procedure. I follow this approach
mainly because most of the parameters are estimated in the first step, which only takes
a few seconds, leaving just a few parameters to be estimated in the second step. This is
a large time gain, given that in each iteration the model needs to be solved (which takes
around 15 seconds for each set of parameters). In terms of numbers, 161 parameters are
estimated in the first step, whereas 85 are estimated in the second step.

Let Ωs be the set of parameters estimated in the s step (s ∈ {1, 2}, Ω = {Ω1,Ω2}). The
estimation procedure for the second step is the following:

• Guess the initial values for all the parameters, Ω0
2 (this includes the parameters of

the learning skills distribution).

• Given Ω0
2, r, R, and X , find the effort decision for each student. There are two

features of this procedure that speed up this calculation. First, given that the final
score cutoff is observed, the equilibrium conditions are not required.Indeed, because
I only need to calculate the student’s problem, conditional on r, the estimation
method used is maximum likelihood as opposed to simulated maximum likelihood.
Second, the first order conditions of the student’ problem, which lack a closed form
solution, should only be solved for the 4, 484 student types.

• Calculate the likelihood function.

• Continue with a new guess until finding the Ω2 that maximizes the likelihood
function.17

17This is done using the derivative free solver, HOPSPACK in Fortran and fminsearch in Matlab.
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There are some features of this procedure that are worth highlighting. The distribution
of unobserved learning skills is approximated by a discrete distribution of four groups.
This approach has two advantages: first, it is consistent with the model, in which there
is a mass of students for each type and where the unobserved groups is one of the
dimensions in which types differ. Second, it speeds up the estimation, because the student
optimization has to be solved just once per student type in each iteration (4, 484 ∗ 4
instead of 146, 319 ∗ 4 times). Although some of the parameters that are estimated in
the second step can also be estimated in the first step (e.g., the factor loadings as shown
in the identification argument), I prefer estimating those parameters in the second step
to give to the model a better chance of fitting the data (since the model is only solved in
the second step). Additionally, the distribution of the unobserved primary school effort
is not estimated. Instead, I calculate the projection of one of the continuous measures
of that effort on its other measures and then replace the primary school effort by that
projection. Finally, when I have missing data in one of the measures (high school effort
or learning skills), I assume that it is random and don’t consider the contribution to the
likelihood of this measure for such a student; I don’t have to drop the entire data point.

To have a clear picture of the likelihood function, in Appendix C, I describe the contri-
butions of different data to the likelihood.

6 Results

The first step estimation results are presented in Appendix D.1 (Tables 4, 5, and 6). Some
aspects of these estimations are worth mentioning. First, for the OLS regressions where
the dependent variable is either high school effort or learning skills and the rest of the
measures are independent variables, the magnitudes, signs, and statistical significance
are as expected. Although in some cases the r squared is fairly small, the instruments
are not weak.18 Second, Table 8, in Appendix D.1, shows that the estimated parameters
of the equations that determine the effort decision (math PSU, verbal PSU, and high
school GPA), are all as expected in terms of statistical significance, magnitudes, and
signs.

Finally, the second stage OLS for the primary education performance presents some
problems (Table 7). Indeed, the effect of effort (predicted with instruments) on SIMCE
scoress is not in the expected direction. Nevertheless, the effect is in the expected
direction for the GPA equation, and in both cases, the effect is statistically significant.
Furthermore, the effect of the predicted learning skills is positive and large in magnitude
in all equations (the parameters are negative because the variables are ordered from
greater to fewer skills). It is worth mentioning that these problematic signs do not have

18The F statistics are: 16.99 (Primary School Attending Regression), 103.19 (Secondary School
Attending Regression), and 58.09 (Repetitions Linear Probability Regression).
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any relevant consequences for the model estimation and simulation. This is the case
because, in my estimation, the primary school standardized test scores are only useful in
identifing the distribution of learning skills (f(λ)), the signs of which are as expected. To
be more specific, the primary education performance measures are important because
they give information about students’ learning skill before they choose their effort in
secondary school.

The parameters estimated in the second step are shown in Appendix D.2 (Table 9).
As in the first step, the vast majority of the estimated parameters have the expected
sign. In particular, all the parameters of the utility function have the right sign and are
statistically significant. Another aspect to highlight is that all parameters that multiply
the latent effort decision in each measurement equation (i.e., the factor loadings) are
positive and statistically significant.

The standard errors reported in Table 9 were calculated using the approximation of the
hessian given by the mean of the outer product of the scores, as if all the parameters
were estimated by MLE.19 Thus, the scores used are the derivatives with respect to the
246 parameters, which implies that the fact that the model is estimated in two steps
does not have any consequence for the estimation of the standard errors. The intuition
of this procedure is that, given the consistent parameter estimates, one Newton-Raphson
step would yield consistent, efficient, and asymptotically normal parameter estimates.
Thus applying the outer-product approximation would provide standard errors for those
parameter estimates.

Given the non-linear relationship between the parameters and the model’s outputs, the
best way to assess the relevance of parameter magnitudes is through model fit analysis
and counterfactual experiments.

6.1 Model Fit

To study how well this model fits the data, I simulate it using the estimated parameters.
Due to the size of the database, I only have one simulation per student. The computa-
tional algorithm to solve the equilibrium of the model works as follows: (1) Draw the
individual cost of taking the PSU and the individual shocks for PSU tests and GPA.
(2) Guess an initial value for the final-score cutoff r0 of each major. (3) Given r0, the
parameters of the model and the cost of taking the PSU, calculate the optimal effort and
optimal decision to take the PSU for each student. (4) Given the shocks and effort deci-
sions, calculate the new final-score cutoff (r1), which solves the equilibrium conditions.
(5) Stop if – for each major – this new r1 is close enough to r0 (maxn∈{2,...,N} |r0n−r11| < ǫ);

19This method to estimate standard error is based on asymptotic theory; in particular, it uses the

idea that, under general conditions,
√
N(Ω̂ − Ω)

p−→ N(0, A−1), where A−1 = E[Hi(Ω)] is estimated as

Â = 1
N

∑N
i=1 si(Ω)si(Ω)

′

, such that si is the score: si =
∂li
∂Ω .
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otherwise, restart from point (2), with r1 as the new guess. Notice that to order to get
convergence, the shocks of step one are simulated only once.

To complement the theoretical results that limit – but not eliminate – the possibility of
multiple equilibria, I simulate the model considering very different initial guesses for r.
In particular, let rdata be the guess I consider in the rest of the paper when I simulate the
model, Table 10, in Appendix D.3, presents the r to which the algorithm converges by
starting from the following initial guesses: {(0.4+α)∗rdata}α∈{0.1,0.2,...,1,1.1,...,1.3}. The idea
of this exercise is to look for the simultaneous existence of worse and better equilibria.
Since it is similar for both majors, this table only presents the simulations for scientific
major. As can be seen, at least numerically, the existence of multiple equilibria does
not seem to be a relevant issue. The equilibrium reached starting from very different –
extreme – initial guesses are almost equal.

Although in the estimation procedure only the student’s problem is solved, because the
final-score cutoff comes from data, to simulate the model implies finding the equilibrium
r vector for each major. Thus, the first element to consider in model fit analysis is how
close the simulated rn are to the cutoffs coming from the data. In this regard, Figure 7,
in Appendix D.3, shows that for each major the simulated vector r captures the trend
and magnitudes of the data fairly well.

Though the model shows a good fit in all the aspects of the data, given that the goal
of this paper is to study how different college admissions policies may affect high school
students’ behavior, I focus my attention on the model fit for those tests that are relevant
in the admissions process, along with the student test decision. Figure 1 shows that
the model replicates the test distribution observed in the data. The discrepancies in the
case of high school GPA are because the data is discrete and there are agglomerations
in some grades, something that cannot be replicated by the model. Moreover, Table 2
shows that the model is able to replicate student performance across different groups
relatively well. Appendix D.3 contains Figures 8 and 9, which show the model fit of the
densities for the remaining tests (2004 and 2006), all of them showing a good fit.

Furthermore, the simulated model also fits the data patterns with regard to the fraction
of students taking the PSU across different groups, which is important because one of
the two decisions considered in my model is whether to take the national admissions
test. Indeed, Figure 2 shows how the simulation of the model replicates this fraction,
particularly the patterns, and, with some discrepancies, the magnitudes across gender,
socioeconomic status of high school, maternal and paternal education, and high school
categories (public, private subsidized, and private non-subsidized).20 Moreover, Table

20The Chilean educational system has three school types: (i) Public or municipal schools are run by
345 municipalities which receive a per-student subsidy from the central government. (ii) Private-voucher
schools; these are independent religious or secular institutions that receive the same per student subsidy
as public schools. (iii) Private unsubsidized schools are also independent, but receive no public funding.
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Table 2: Model Fit by Different Groups

PSU math PSU verbal GPA
Model Data Model Data Model Data

All 508 505 505 502 537 538
Female 494 493 500 499 550 550
Male 525 518 511 505 523 524
SES 1 423 414 422 411 516 509
SES 2 452 449 453 451 517 513
SES 3 517 525 515 524 542 547
SES 4 581 586 573 579 570 579
SES 5 640 636 626 622 611 614
F wo college 490 486 488 484 529 528
F w college 597 599 589 590 591 596
Public 475 472 472 471 530 530
Private Sub 503 500 502 499 530 531
Private non Sub 637 633 622 619 607 611

11, in appendix D.3, shows the model fit at individual level on the decision about taking
the admission test but, which is much more demanding than the previous analysis at
aggregate level. However, the table presents a very high fraction of coincidences for
different groups, between 54 and 96 percent.
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Figure 1: Model Fit in Tests Determining Final Score
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(b) PSU verbal
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(c) GPA in high school
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Figure 2: Fraction of the Students Taking the PSU by Groups
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6.2 Learning Skills

As usual in structural estimations, discrete unobserved groups improve the fit of the
model. Besides its contribution to fitting the data, these unobserved groups turned out
to be a relevant driver of the observable differences in test scores. As Figure 3 shows,
the impact of these learning skills groups on tests are between 0.5 and 1.5 standard
deviations (medium-low versus low group), 1 and 2.5 standard deviations (medium-high
versus low group) and 2 and 4 standard deviations (high versus low group).21

Figure 3: The Impact of Learning Skills Groups on Tests
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7 Counterfactual Experiments

7.1 Impact of the quota by Socioeconomic Group Admission

System

To study the impact of affirmative action policies on effort, test scores, and the prob-
ability of taking the college admissions test, I begin by simulating the model under a
quota by socioeconomic group admission system (SES-quota system), which imposes
that, for each university tier, the SES distribution is the same as the population. In
other words, if, in the whole system, x% of the students attend high schools with so-
cioeconomic group i (SES i), then there should be x% of students from each high school
type in each university tier. In practice, the way to simulate this counterfactual is by

21In all the simulations and counterfactual experiments performed in this paper, the probabilities of

each learning skills group are calculated by Bayes’ rules, i.e., πi
t|x = πtLi(Ω|Typeλ=t)∑

τ πτLi(Ω|Typeλ=τ) .

33



having a tournament within each socioeconomic group and major (keeping the weights
constant for each PSU test and GPA), such that the seats available for students at-
tending high schools of socioeconomic group g in university tier n and major z is equal

to Sz
n ∗
(

#students SES g preferring major z

#students preferring major z

)
, in which case there are five vectors r for each

major (one for each socioeconomic group). Notice that beyond the seats offered by uni-
versities for each socioeconomic group, the only aspect that change between the baseline
scenario and the SES-quota system counterfactual is that in the latter instead of having
two markets, one for scientific and one for humanities major, there are 10 markets, one
for each combination of socioeconomic group and major offered. In other words, the
properties of the equilibrium (i.e., existence and the restrictions about multiplicity) are
exactly the same across these 12 markets. In consequence, the algorithm to calculate
each of these 12 equilibria is also the same.

Figure 10 (Appendix E.1) shows how the SES-quota system makes important changes to
universities’ socioeconomic composition. Because this is a tournament, where the seats
and “prizes” are fixed, there are winners and losers. In particular, the figure reveals that
the fraction of students admitted to the top universities who belong to SES 1, SES 2,
and SES 3 increases, at the expense of higher socioeconomic groups (SES 4 and 5).

To see how changes in students’ opportunities may affect their behavior in high school,
Figure 4 shows that the SES-quota implementation increases the average effort of high
school students by 0.34 standard deviations. Furthermore, these plots show the impor-
tance of the interaction between the two student decisions (i.e. effort and taking the
PSU), in the sense that the greatest changes in effort come from those students who
also change their decision about taking the college admissions test. Indeed, for those
students who were not taking the test in the baseline simulation, but do take it once the
admission process is changed, the increase in average effort is 5.5 standard deviations.
The opposite occurs for those who change from taking to not taking the test (−4.68 stan-
dard deviations). However, even for those students who do take the college admissions
test in both scenarios, there is an important increase in average effort (0.91 standard
deviations). Because by construction there are no changes for those who do not take the
college admissions test in both scenarios, I do not show this simulation.
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Figure 4: The Impact on Effort of Quota by SES (SES-quota Rule versus Baseline Rule,
in std.)
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Note: ({Yes,No},{Yes,No}) stands for (Whether the students were taking the PSU in baseline scenario,Whether the students are taking the
PSU in counterfactual scenario).

Given the linear form of the tests’ production function, the effect of this affirmative
action policy on tests is a linear function of the effect on effort. In particular, Figure
11, in Appendix E.1, presents the numbers for those students who attend SES 1 or 2
high schools, where the average PSU score (math and verbal) increases by around 0.04
standard deviations and the average high school GPA by around 0.08. The opposite
occurs for socioeconomic groups 4 and 5. In all cases, these moderate effects more
than double for those who change their PSU decision. Figure 11 also shows that, even
though the magnitudes of these changes are small, there is an important effect on the
average final score at each university, decreasing the final score in the higher-ranked
universities, and doing the opposite in the lower-ranked universities. This reveals an
important trade-off between equal opportunity and efficiency, at least for the policies
studied in this paper. In the sense that, even though the SES-quota system increases
effort exerted by students, that positive outcome does not fully compensate the fact that
– in order to do so – the SES-quota system requires to importantly break the sorting of
students across universities by their final score.

As pointed out above, admissions rules also affect the test-taking decision. As my model
considers, because the test is costly, students take it if they have a fair chance of being
admitted to a good university. Indeed, Figure 12 (Appendix E.1) shows that the im-
plementation of the SES-quota system increases (decreases) PSU participation by about
5−16 percentage points for socioeconomic groups 1 and 2 (3, 4, and 5). Interestingly, for
the entire population, the increase and decrease in the PSU participation almost cancel
each other out. There are two reasons behind this result, whose effects interact. The
first explanation is that the new admissions policy does not change the total number of
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seats offered by universities. Hence, no matter how opportunities are distributed across
socioeconomic groups change, it is always the case that for each student who now has
access to the university system, there is another student who loses it. Notice that the
one-to-one relationship between losers and winners is only an ex-post phenomenon, be-
cause before the realization of the production test score shocks (ex-ante) there could be
many students fighting for the same seat. The second reason is that due to the relative
small size of the (estimated) variances of the production test score shocks, in both sce-
narios (baseline and couterfactual), the vast majority of the students who decide do not
take the admission tests, have negligible probabilities of being admitted in any university
in case of taking those tests. Thus, for many students the ex-ante is very similar to the
ex-post scenario.

In terms of policy analysis, it is not only relevant how many students change their
behavior, but also who those students are. The empirical approach followed in this
paper allows for such an analysis. In particular, the second plot of Figure 12 (Appendix
E.1), shows that, when the SES-Quota system is introduced, the new PSU-takers are
noticeably more skilled (i.e. are a higher learning skill type) than those who decide to
abandon the admissions process, i.e. do not take the PSU.

From the previous analysis, it is clear that effort is quite elastic to changes in college
admissions rules. However, given the estimated parameters of the tests’ production func-
tions, these effort reactions do not imply changes of the same magnitudes for student
performance. In other words, the estimated model requires large changes in college
admissions rules in order to have substantial variations in high school students’ perfor-
mance. In this context, it is pertinent to ask how relevant this is to the model of effort.
In this regard, I compare how the final-score cutoff and the admissions at each univer-
sity would change, given the described counterfactual experiments, in two scenarios: (1)
with optimal effort (i.e., simulating the model), and (2) with fixed effort (i.e., the effort
exerted in the baseline scenario). The results plotted in Figure 13 (Appendix E.1) show
that there is an important difference between the optimal effort’s final-score cutoffs and
the fixed effort’s final-score cutoffs, given the implementation of the SES-Quota system.
For example, in the case of the final-score cutoffs for SES 1 and 2, the difference between
these two scenarios ranges from 0.2 to 1 standard deviations. Moreover, about 30% of
the students are admitted to a different university tier in these two scenarios, a relevant
figure given that I assume only eight university tiers.

7.2 Impact of the Increasing GPA weight on Final Score

In the second counterfactual experiment, I simulate what happens if the GPA weight
is increased, which in practice implies that an increased probability of attending better
universities for students from low income high schools. This is because, while the high
school GPA of each student is, to some extent, relative to that of her classmates, the
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national test scores are relative to the student’s national cohort. Therefore the latter
captures differences in high school quality, which is highly correlated with income.

Figure 14, in Appendix E.2, shows that increasing the GPA weight from 0.4 (the baseline)
to 0.5 leads to a moderate increase in the fraction of students attending top universities
who come from low and medium income high schools (SES 1, 2, and 3). Figure 15
shows that, as expected, this change increases when the new GPA weight is 0.7, in which
case the fraction of the students admitted to the top university tiers who belong to SES
1 and 2 increases substantially. Additionally the fraction of the students admitted to
the top university tier who belong to SES 1 is also increased. All these increments are
at the expense of higher socioeconomic groups (SES 4 and 5). Notice that the SES-
Quota system presented in this paper is a more aggressive affirmative action policy than
changing GPA weights.

Regarding the impact of effort, Figure 16, in Appendix E.2, shows that the changes in
GPA weight imply increases in students’ average effort from 0.3 to 1.2 standard devia-
tions, depending on the magnitude of the weight’s change. However, this result is very
influenced by changes in the decision to take the admission exam, since for those students
who take the PSU in both the baseline and in the counterfactual, the increase in effort
is always lower than 0.3 standard deviations.

7.3 Comparing the Efficiency of these Admission Rules

Let define an efficient student allocation, where, conditional on any particular socioeco-
nomic composition in each university, the best students (i.e., with the highest expected
final score) attend the best universities. Given that definition, I discuss which college
admissions rule, presented in this paper, leads to the most efficient student allocation.
To do so, I first simulate the estimated model for different GPA weights and calculate
the resulting socioeconomic composition among universities from each of these exercises.
Then I impose these quotas in the SES-quota system. As a result, I can compare out-
comes of the two policy experiments while having the same socioeconomic composition
in both cases.

As Figure 5 shows, increasing the GPA weight lead to a higher boost in average effort
than for the SES-quota system. This is mainly because the estimated effort marginal
productivity is much higher in the GPA production function than in the production
functions of the two PSU tests.
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Figure 5: Average Effort: SES-quota versus Changing GPA’s Weight
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However, this does not mean that increasing the GPA weight is the preferred system to
achieve equal opportunity. Instead, Figure 6 shows that the higher the GPA weight, the
larger the advantage of the SES-quota system, in terms of expected PSU test scores and
GPA of those admitted to the top universities. As the GPA weight increases, the GPA
shock becomes more relevant in the admissions process, while in the SES-Quota system,
the same equal opportunity achievement is reached by keeping the weights of the PSU
tests and GPA constant, 0.4 and 0.3, respectively. Therefore the latter keeps the weights
of each shock constant, which attenuates the risk of admitting a bad student to a good
university due to one extremely positive shock (the three shocks are independent), in this
case extremely GPA positive shock. In sum, when a policy maker pretends a relevant
affirmative action policy, in spite its lower capacity to boost student academic effort,
the SES-Quota system implies a more efficient student allocation, because it is able to
achieve any level of equal opportunities by making better use of the existing information.
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Figure 6: Expected Tests and GPA: SES-quota versus Changing GPA’s Weight
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(b) GPA weight = 0.7
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(c) GPA weight = 0.8
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(d) GPA weight = 0.9

Universities
1 2 3 4 5 6 7 8

E
[te

st
|S

E
S

-Q
uo

ta
] -

 E
[te

st
|n

ew
 G

P
A

 w
ei

gh
t],

 s
td

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

PSU math
PSU verbal
GPA

8 Conclusion

The first lesson from this paper is that it is qualitatively and quantitatively important
to consider how a college admissions system may impact high school students’ behavior.
Specifically, the results of this paper support the claim that affirmative action in access
to college may boost the average of the academic effort exerted by high school students.
Moreover, this paper sheds some light on which admissions system could be optimal in
the sense of inducing an efficient student allocation conditional on delivering the desired
change in universities’ socioeconomic composition.
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In particular, the most important results of this paper are the following: (1) Average
academic effort in high school is increased by 0.34 standard deviations under a SES-quota
system. (2) This leads to a moderate improvement in high school students’ performance.
(3) Modeling effort and the decision to take the college admissions test are important for
assessing the effect of affirmative action policies on students’ allocation across universi-
ties. (4) The largest change in exerted effort comes from those students who also change
their decision about taking the college admissions test. (5) Neither of the affirmative
action policies simulated in the paper increase – by a significant amount – the percentage
of students taking the national test for college admissions, which is consistent with the
fact that there are the still the same number of winners and losers. However, there are
relevant variations in who is taking the test; in particular, this percentage increases for
low-income students and those who have a higher level of learning skills. (6) Although
increasing the GPA weight is more effective in boosting academic effort in high school,
the SES-quota system is more capable in terms of allocating the best students to the best
universities, conditional on delivering the same universities’ socioeconomic composition.

The intuition of the efficiency in allocating students in the SES-quota system is that,
within each socioeconomic group, students are ranked based on all of the available in-
formation about their ability. Thus, the probability of misallocating a student based on
a noisy part of a particular piece of information (as the other policy puts on high school
GPA) is attenuated. This insight is particularly relevant when the allocation efficiency
of the two admission rules are compared conditional on implementing an intensive af-
firmative action policy, because the weight on GPA (and on its shock) to deliver this
intensity is closer to one.

In my model, life-time payoffs do not depend on individual characteristics, due to the fact
that I don’t have this information in the database which links tax records to admission
test scores. This is a restrictive assumption, however its effect on policy evaluation could
be both ways, incrementing or attenuating the effects. In Chile, as everywhere, students
coming from low socioeconomic backgrounds have lower life-time payoffs, conditional on
attending the same universities and majors. Thus, if the estimated parameters were
constant in this new database context, this would attenuate the positive effects of affir-
mative action policies, to the extent that these policies would give more opportunities to
students whose prizes for exerting effort are lower. However, in this new database context
the estimated parameters should change, since the parameters would have to help the
model to rationalize the fact that in the data even though low socioeconomic students
have less monetary incentive to exert effort, they exert not that different academic effort
relative to wealthier students.

Furthermore, to answer the questions discussed in this paper, it would have been best to
have data before and after an admissions policy change. This ideal data would make it
easier to capture the effects of admissions rules on high school students’ performance. In
the absence of such data, structural estimations allow for ex ante policy evaluation. Yet,
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even with the ideal data, the structural approach used in this paper would be needed
in order to study the effect of several policies. The current paper is one of the first
steps in studying the structural relationship between high school student effort and the
probabilities of admission to a good university. The ability to estimate the structural
relationship between high school academic effort and probability of admission to various
universities is a powerful tool to discuss what should be the main features of an admission
system that seeks to find an optimal combination of efficiency and equal opportunity.
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A Existence and uniqueness

A.1 Existence in the market of major z
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Hence, proving existence for the equilibrium is equivalent to showing the existence of a
fixed point for G(rz(t)). In order to fulfill the Brouwer fixed point theorem’s conditions,
the vector-valued function G : M → M should be continuous and M non-empty, and a
compact and convex subset of some Euclidean space RN−1.

Given that the effort decision of any student is bounded by [mint{et},maxi{ēt}] it is
clear that:23

22ê1t (r
z(t)) stands for the optimal effort decision for all students of type t who decide to take the

college admissions test given the vector of cutoff scores rz(t).
23Given that limrz(t)→−∞ Φ
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1
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)
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1
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)
= 1, and
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rz(t) → ∞ ⇒
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Then, taking any small number ε > 0, it is true that:

∀ n : rz(t) → ∞ ⇒ Gn(r
z(t) + ε ∗~1)−Gn(r

z(t)) → ε > 0

∀ n : rz(t) → −∞ ⇒ Gn(r
z(t) − ε ∗~1)−Gn(r

z(t)) → −ε < 0

Therefore, there exist two vectors r and r̄ such that ∀ rz(t) < r̄ ⇒ G(rz(t)) < G(r̄) < r̄
and ∀ rz(t) > r ⇒ G(rz(t)) > G(r) > r.24 Hence, I can define the set M = {rz(t) ∈
RN−1, r ≤ rz(t) ≤ r̄}. This set is compact, convex, and not empty.25

To show that G(rz(t)) is continuous it is sufficient to prove that ∀t êt(rz(t)) is continuous.26
Moreover, applying the Berge’s maximum theorem and considering the fact that the effort
decision of any student is bounded by [mint{et},maxt{ēt}] (compact set), a sufficient
condition for the continuity of e1t (r

z(t)) is that the objective function for those students
who decide to take the college admissions test is strictly concave.

Taking the derivative to the first order condition (10), it follows that:
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1
t (r

z(t))− ê0t )−
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z(t))a1−a0t

ση

)]
<

∑N
δ=n S

z(t)
δ , and r such that ∀rz(t) < r:

∑
t mtΦ

(
Dt(r

z(t))−FCt

σfc

) [
1− Φ

(
rz(t)n −ê1t (r
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25To ensure the non-emptiness, it is possible to pick r < 0 and r̄ > 0.
26If ê1t (r

z(t)) is continuous then Dt(r
z(t)) is also continuous.
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But because the first term can not be bigger than (R
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Moreover, G(rz(t)) is well defined for any rz(t) because, as shown above, for any rz(t)

there exist optimal efforts for those who take the college admissions test (ê1t (r
z(t))) and

for those who do not (ê0t ). �

Uniqueness

Lemma 3: In the case where N = 2, the equilibrium is unique when it exists.

Proof: The lemma is proved by contradiction. In particular, assuming there are two
equilibria {r̂, ê} and {r̂′, ê′}, where, without loss of generality r′ > r,28 from the equilib-
rium definition, it is directly shown that:
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To get the contradiction I proceed in two steps. First, I show that the statement:

∀r̂′ > r̂, t : Φ
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r̂′−ê′ta1−a0t
σε

)
−Φ

(
r̂−êta1−a0t
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)
> 0, is a sufficient condition to get the desired

contradiction. Second, I show that this statement is true regardless of the continuity of
effort in r.

Step 1:

Let Π0i = maxeE[U0
i (e)] and Π1i(r) = maxeE[U1

i (e)], then Dt(i) = Π1i(r)+FCi−Π0i.
29

Due to the envelope theorem, taking the derivative to Dt(i) with respect to r we get:30

27The function xφ(x) is maximized at x = 1.
28Notice since N = 2, r̂ and r̂′ are scalars. S is the amount of seats offered by the only university.

For simplicity I suppress the individual index z.
29The value function for those who do not take the college admissions test does not depend on r.
30Here, I am assuming that effort is continuous in r (if that is the case, the value function is differ-

entiable), but in step 2 I also show that Π1i(r̂) > Π1i(r̂
′) when effort is not continuous in r.
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r̂−êta1−a0t
σε

)
> 0. �

Step 2:

I prove this inequality in two steps. First, I prove it for those r where the effort decision
is continuous. Then I show the inequality when the effort decision is not continuous in
r.

Case 1: effort decision is continuous in r:

First, it should be considered that the second order condition when N = 2 implies that:31
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31For simplicity, I suppress the individual sub-index and denote φ
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)
as φ(r).
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Moreover, taking a derivative of the first order condition (10), when N = 2 implies:
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Therefore, it follows that
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Case 2: effort decision is discontinuous at r:32

Without loss of generality, assume there are two different effort decisions which are

optimal at r (êh > êl). Defining Πx = (R1 − R2)Φ
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theorem implies:

∂Πl

∂r
− ∂Πh

∂r
=

(R2 −R1)

ση

[
φ

(
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Moreover, from the first order conditions it is directly shown that:
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32Given that the discontinuity is possible only for those who take the college admissions test, for this
proof I assume all take the college admissions test.
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Therefore, by (23) I proved that increasing r leads to some jump in the global optimal
effort from high local optimal effort to low local optimal effort, which ensured that
∀r̂′ > r̂ such that the effort decision is not continuous at r for students type t, then

Φ
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)
> 0. �

In the case where N > 2, as in this paper, it can be established that
∑N

n=2
∂Gm

∂rn
< 0 ∀m,

where Gm = Gm − rm. This result implies that if G(r̂) = 0 (i.e., r̂ is an equilibrium),
then r̂′ = r̂(a+1) where a 6= 0, cannot be an equilibrium.33 Loosely speaking, this means
that if there is an equilibrium denoted by r̂, the further r̂′ departs from r̂ the harder it
is to have r̂′ as another equilibrium.

To prove the statement, I proceed in two steps.34 First, it is proved that
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∂rm
a1

]
,

where both inequalities are driven by the fact that ∂D̂t

∂rm
< 0. From these two inequalities

the first result follows:

33It would be better to show that this is true even when the increase (or decrease) is not proportional
across score cutoffs. However, i could stablish that result.

34For simplicity the result is shown for the case where G is continuous.
35φt(rm) = φ

(
rm−ê1ta1−a0t

ση

)
and Φt(rm) = φ

(
rm−ê1ta1−a0t

ση

)
.
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)
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[
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N∑
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∂rn

]
.

To establish the second result, I take the derivative of the first order condition respect
to rm:

∂ê1t
∂rm

=
1

θt2
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(Rt
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n)

(
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(
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)2
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−
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(Rt
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(
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)
φt(rm)
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σ2
η

=
− 1
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(
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ση

)
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a1
σ2
η

1− 1
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t
n+1 −Rt

n)
(

rn−ê1i a1−a0i
ση

)
φi(rn)

(
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⇒ 1− a1

N−1∑
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∂ê1t
∂rn

=
1

1− 1
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∑N−1
n=1 (R

t
n+1 − Rt

n)
(

rn−ê1ta1−a0t
ση

)
φt(rn)

(
a1
ση

)2 > 0,

where the inequality is because the denominator is positive due to the second order
condition of student maximization. �
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B Variables: Descriptions and Statistics

Table 3: Independent Variables

Full Sample Estimation Sample Statistics

Variable Mean Std. Dev. N Mean Std. Dev. N Diff. Stat.0 P-Val.
Gender36 0.48 0.50 212656 0.47 0.50 146319 0.01 3.15 0.00
Mother’s Education

No Information37 0.28 0.45 212656 0.16 0.37 146319 0.11 52.59 0.00
Incomplete Primary37 0.11 0.31 212656 0.12 0.32 146319 -0.01 -6.24 0.00
Primary37 0.21 0.41 212656 0.24 0.42 146319 -0.03 -12.38 0.00
Secondary37 0.23 0.42 212656 0.26 0.44 146319 -0.04 -17.21 0.00
Technical Post-Secondary37 0.10 0.30 212656 0.11 0.32 146319 -0.02 -9.36 0.00
College37 0.09 0.28 212656 0.10 0.30 146319 -0.02 -9.72 0.00
Father’s Education

College37 0.12 0.32 212656 0.14 0.35 146319 -0.02 -11.96 0.00
Primary School Type

Public37 0.50 0.50 174883 0.49 0.50 146319 0.00 1.11 0.27
Subsidized Private37 0.41 0.49 174883 0.41 0.49 146319 0.00 0.02 0.99
Private37 0.09 0.29 174883 0.10 0.29 146319 -0.00 -1.47 0.14
High School Type

Public37 0.41 0.49 212656 0.39 0.49 146319 0.02 7.18 0.00
Subsidized Private37 0.51 0.50 212656 0.52 0.50 146319 -0.01 -4.15 0.00
Private37 0.08 0.28 212656 0.09 0.29 146319 -0.01 -3.92 0.00

0This column corresponds to the statistic from an equality of means test between the Estimation Sample and the Full Sample. If
binary, a two-tailed z-test of proportions is performed. If else, a two-tailed test t-test is performed.

361 if male, 0 if female
37Binary variable
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Table 3 – Continued from previous page

Full Sample Estimation Sample Statistics

Variable Mean Std. Dev. N Mean Std. Dev. N Diff. Stat.0 P-Val.
Primary School SES 38

SES 137 0.08 0.27 174883 0.08 0.27 146319 -0.00 -0.48 0.63
SES 237 0.30 0.46 174883 0.29 0.45 146319 0.01 2.47 0.01
SES 337 0.36 0.48 174883 0.36 0.48 146319 0.00 0.18 0.86
SES 437 0.18 0.39 174883 0.18 0.39 146319 -0.00 -1.07 0.29
SES 537 0.09 0.28 174883 0.09 0.29 146319 -0.00 -1.65 0.10
High School SES 38

SES 137 0.17 0.38 212656 0.16 0.37 146319 0.01 5.37 0.00
SES 237 0.39 0.49 212656 0.37 0.48 146319 0.01 6.09 0.00
SES 337 0.25 0.43 212656 0.26 0.44 146319 -0.01 -3.87 0.00
SES 437 0.11 0.31 212656 0.12 0.33 146319 -0.01 -4.99 0.00
SES 537 0.08 0.27 212656 0.09 0.28 146319 -0.01 -4.08 0.00
School Location

Rural Primary School37 0.10 0.31 174883 0.11 0.31 146319 -0.00 -0.58 0.56
Rural High School37 0.04 0.20 212528 0.04 0.19 146319 0.00 1.96 0.05
Primary School Scores

Math Simce Score 266.65 48.99 173481 268.64 48.50 145236 -1.99 -11.47 0.00
Verbal Simce Score 265.54 49.08 174394 267.56 48.34 145944 -2.02 -11.70 0.00
Natural Science Simce Score 269.40 49.31 174680 271.28 48.84 146177 -1.88 -10.80 0.00
Social Science Simce Score 264.08 48.02 173195 265.98 47.60 145011 -1.90 -11.14 0.00
GPA Score 5.84 0.53 181551 5.87 0.52 146319 -0.03 -17.21 0.00
High School Scores

Math Simce Score 263.06 63.75 185994 268.59 62.68 146041 -5.53 -25.02 0.00
Verbal Simce Score 262.22 51.16 186060 266.25 50.49 146083 -4.03 -22.66 0.00
Math PSU Score 497.68 111.34 156243 508.20 110.70 113946 -10.52 -24.33 0.00
Spanish PSU Score 495.48 110.10 156243 505.05 108.85 113946 -9.57 -22.72 0.00

38 SES refers to one of the five School Socioeconomic Groups
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Table 3 – Continued from previous page

Full Sample Estimation Sample Statistics

Variable Mean Std. Dev. N Mean Std. Dev. N Diff. Stat.0 P-Val.
Takes PSU37 0.73 0.44 212656 0.78 0.42 113946 -0.04 -19.86 0.00
GPA Score 520.32 102.82 212517 537.39 100.93 146319 -17.07 -49.25 0.00
Primary School Effort

Measures Mep

Exerts effort at hard subjects 39 1.73 0.82 171092 1.72 0.81 146319 0.01 2.11 0.03
Try hard to learn39 2.08 1.01 172021 2.08 1.00 146319 0.00 0.06 0.95
Looks for additional information 39 1.53 0.72 171270 1.52 0.72 146319 0.00 1.82 0.07
Attendance, 8th Primary Grade 39 95.23 6.48 181551 95.71 3.87 146319 -0.48 -25.07 0.00
Spanish Study Intensity 39 2.60 0.73 171123 2.60 0.72 146319 -0.00 -0.24 0.81
Math Study Intensity 39 2.54 0.80 170971 2.53 0.80 146319 0.00 0.85 0.39
High School Effort

Measures Meh

Attendance40 92.61 5.74 212656 93.78 3.86 146319 -1.17 -67.94 0.00
Exerts Effort 39 0.26 0.44 174481 0.27 0.44 137532 -0.01 -3.78 0.00
Uses Calculator39 3.70 0.83 139176 3.71 0.83 111366 -0.01 -3.84 0.00
Uses Textbooks39 4.00 0.80 143604 4.02 0.79 114742 -0.01 -4.42 0.00
Studies at Home39 4.17 0.82 115287 4.18 0.82 92329 -0.02 -4.16 0.00
Learning Skills Measures Mλp

Able to understand hard subjects39 1.90 0.82 172281 1.89 0.81 145938 0.01 1.73 0.08
I Trust I can excel at exams39 1.60 0.74 171849 1.59 0.74 145768 0.01 2.49 0.01
Can set learning goals39 1.33 0.60 171511 1.33 0.59 145581 0.01 2.67 0.01
Can avoid poor marks39 1.56 0.80 171065 1.56 0.80 145261 0.01 1.76 0.08
Repeated at least 1 grade37 0.08 0.27 171536 0.07 0.25 144128 0.01 3.62 0.00

39 Can be integers between 1 and 4 (1 is always or almost always, 2 is often, 3 is ocasionally and 4 is never or almost never)
40Percentage of attendance during the 2nd High School grade
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The definition of SES (socioeconomic groups) was made by the Ministry of Education
using cluster analysis and four variables: a) father’s years of education, b) mother’s
years of education, c) monthly family income (declared), and d) an index of student
vulnerability.

To characterize student families I only use information from the 2006 SIMCE . Using
2004 information would have lead to an increased loss of data.

C Likelihood

Let Ti = βT
0 + xh

i β
T
1 + ehi β

T
2 + λiβ

T
3 + εTi , such that

Ti ∈ {PSUMi, PSUVi, GPAh
i , SIMCEh

math,i, SIMCEh
verbal,i}.

Given that conditional on λi, x
h
i and ehi , the εi are independent across tests, the contri-

bution of the individual i’s test to the likelihood is given by:

If Ti ∈ {PSUMi, PSUVi}:
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Fi(high school tests | Typeλ = t) =
∏

Ti

f(Ti|xh
i , e

h
i , λt,Ω) (25)

Similarly, the contributions to the likelihood of high school effort measures are described
by:41

41For simplicity the effort measurements are assumed to be continuous, but in the estimation I use
ordered probit specifications.
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f(Mehji|xejh
i ,ehi , TCATi,Ω) =
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, j ∈ {1, ..., Jeh}

Fi(high school effort measures) =
∏

j

f(Mehji|xejh
i , ehi , TCATi,Ω) (26)

Along the same lines, the contributions to the likelihood of the unobserved learning skill
measures are described by:42

f(Mλp
ji|xλjp

i , λt,Ω) = φ
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1 − λtα
λjp

εejh

)
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σεejh
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∏

j

f(Mλp
ji|xλjp

i , λt,Ω) (27)

Let Ti = βT
0 + xh

i β
T
1 + epiβ

T
2 + λiβ

T
3 + εTi , such that

Ti ∈ {GPAp
i , SIMCEp

math,i, SIMCEp
verbal,i, SIMCEp

socialscience,i, SIMCEp
naturalscience,i}.

Given that, conditional on λi, x
h
i and ehi , the εi are independent across tests, the contri-

bution to the likelihood is given by43:
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i , λt,Ω) (28)

42Again, these measures are assumed to be continuous, but in the estimation I use ordered probit
specifications.

43M̂e
p

1i = δ̂1 +
∑Jep

m=2 Me
p
miδ̂m and ωT

i = εTi − ε
e1p
i βT

2 , where the δ̂s are the OLS coefficients.
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Therefore, the likelihood contribution for the ith individual is:

Li(Ω) = log

(∑

t

Fi(high school tests | Typeλ = t) Fi(high school effort measures | Typeλ = t)

Fi(learning skill measures | Typeλ = t) Fi(primary school tests | Typeλ = t) πt

)

(29)
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D Results

D.1 First stage parameters

Table 4: Primary School Attending Regression

Variable Primary School Attendance

Exert effort at hard subjects: often -0.133***
(0.0256)

Exert effort at hard subjects: occasionally -0.214***
(0.0360)

Exert effort at hard subjects: never or almost never -0.218***
(0.0787)

Try hard to learn: often 0.0586**
(0.0258)

Try hard to learn: occasionally 0.115***
(0.0284)

Try hard to learn: never or almost never 0.124***
(0.0393)

Look for additional information: Often -0.0500*
(0.0263)

Look for additional information: occasionally -0.123***
(0.0422)

Look for additional information: never or almost never -0.280***
(0.107)

Language study intensity: some days a week 0.0140
(0.0473)

Language study intensity: only for exams -0.0481
(0.0497)

Spanish study intensity: never -0.380***
(0.0672)

Math study intensity: some days a week 0.0277
(0.0405)

Math study intensity: only for exams -0.0286
(0.0432)

Math study intensity: never -0.0208
(0.0573)

Constant 95.82***
(0.0435)

Observations 146,319
R-squared 0.002
F statistic 16.99

Note: Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1. In the case
of the question whether she exerts effort at hard subjects, the omitted category is is always

or almost always. In the case of the question about language study intensity, the omitted
variable is every or almost every day.
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Table 5: Grade Retention Before 8th Grade (Linear Probability Model)

Variable Grade Retention before 8th grade

Able to understand hard subjects: often 0.00174
(0.00154)

Able to understand hard subjects: occasionally 0.0290***
(0.00224)

Able to understand hard subjects: never or almost never 0.0307***
(0.00581)

Trust about skills to do homework and exams: often 0.00425**
(0.00166)

Trust about skills to do homework and exams: occasionally 0.0212***
(0.00283)

Trust about skills to do homework and exams: never or almost never 0.0287***
(0.00947)

Can set learning goals: often 0.00502**
(0.00196)

Can set learning goals: occasionally 0.0172***
(0.00404)

Can set learning goals: never or almost never 0.0183
(0.0132)

Can avoid poor marks: often 0.000835
(0.00166)

Can avoid poor marks: occasionally 0.0142***
(0.00300)

Can avoid poor marks: never or almost never 0.00883**
(0.00416)

Constant 0.0532***
(0.00107)

Observations 141,916
R-squared 0.006
F statistic 58.09

Note: Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1. In the case of all the questions,
the omitted category is always or almost always.
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Table 6: High School Attending Regression

Variable High School Attendance

Persistence in exerting effort (Parents’ opinion) 0.152***
(0.0278)

Do homework at the proper space at home: almost never 0.111
(0.0819)

Do homework at the proper space at home: frequently 0.371***
(0.0791)

Do homework at the proper space at home: almost always 0.498***
(0.0798)

Use of calculator to study at home: almost never 0.376***
(0.0771)

Use of calculator to study at home: frequently 0.837***
(0.0778)

Use of calculator to study at home:almost always 0.873***
(0.0803)

Read textbooks at home: almost never -0.635***
(0.102)

Read textbooks at home: frequently -0.353***
(0.0397)

Read textbooks at home: almost always -0.0721**
(0.0312)

Constant 93.14***
(0.105)

Observations 83,366
R-squared 0.013
F statistic 103.2

Note: Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1. In the case
of all the questions, the omitted category is never.
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Table 7: Two Stage Least Square for Primary Education Students’ Performance

Variables Verbal SIMCE Math SIMCE Natural Science Social Science GPA
SIMCE SIMCE

Male -8.655*** 9.499*** 9.414*** 9.565*** -0.164***
(0.232) (0.222) (0.228) (0.230) (0.00258)

Rural School 1.562*** 1.439*** 3.548*** 2.933*** 0.0627***
(0.463) (0.449) (0.434) (0.459) (0.00529)

School SES = 2 1.055** -0.880* 0.0666 0.626 -0.0681***
(0.529) (0.513) (0.488) (0.526) (0.00605)

School SES = 3 10.99*** 8.463*** 9.793*** 11.44*** -0.0697***
(0.581) (0.559) (0.536) (0.573) (0.00652)

School SES = 4 28.05*** 28.06*** 29.29*** 30.13*** -0.0390***
(0.653) (0.634) (0.615) (0.643) (0.00724)

School SES = 5 42.33*** 48.86*** 46.75*** 42.92*** 0.0632***
(1.040) (1.016) (1.044) (1.007) (0.0114)

Mother’s Edu: Incomplete Primary -6.537*** -5.747*** -6.131*** -5.259*** -0.0186***
(0.454) (0.430) (0.431) (0.447) (0.00512)

Mother’s Edu: Primary -1.687*** -1.345*** -2.424*** -1.734*** 0.0456***
(0.380) (0.359) (0.367) (0.374) (0.00424)

Mother’s Edu: Secondary 6.452*** 5.097*** 5.362*** 6.826*** 0.138***
(0.374) (0.355) (0.366) (0.368) (0.00414)

Mother’s Edu: Technical post Secondary 9.035*** 7.438*** 8.870*** 10.36*** 0.146***
(0.467) (0.452) (0.469) (0.462) (0.00517)

Mother’s Edu: College 14.68*** 14.04*** 16.16*** 16.51*** 0.209***
(0.526) (0.508) (0.529) (0.519) (0.00585)

Faher’s Edu: College 6.646*** 7.574*** 8.040*** 6.743*** 0.0583***
(0.410) (0.401) (0.420) (0.407) (0.00455)

School type: Subsidized Private 1.392*** 0.733*** 2.320*** 2.267*** -0.103***
(0.289) (0.276) (0.283) (0.287) (0.00318)

School type: Non Subsidized Private -0.515 -1.043 1.070 -2.413*** -0.136***
(0.851) (0.830) (0.882) (0.822) (0.00923)

Attendance -6.594*** -13.26*** -8.170*** -7.535*** 0.262***
(0.751) (0.711) (0.748) (0.732) (0.00813)

Grade Retention before 8th grade -347.8*** -430.5*** -360.9*** -379.0*** -6.906***
(5.985) (5.640) (5.874) (5.837) (0.0652)

Constant 838.8*** 1,387*** 997.0*** 955.6*** -18.65***
(71.99) (68.18) (71.72) (70.25) (0.780)

Observations 143,646 142,964 143,889 142,747 144,028
R-squared 0.202 0.278 0.247 0.201 0.143

Note: Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1.
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Table 8: Two Stage Least Square for Secondary Education Students’ Performance

Variables Verbal SIMCE Math SIMCE Math PSU Verbal PSU GPA

Male -7.136*** 11.66*** 23.28*** 3.641*** -28.31***
(0.271) (0.322) (0.579) (0.594) (0.572)

Rural School -3.703*** -5.968*** -12.84*** -12.15*** -0.624
(0.763) (0.927) (1.768) (1.869) (1.650)

School SES = 2 10.02*** 13.94*** 22.80*** 24.38*** -4.249***
(0.443) (0.530) (1.058) (1.091) (0.935)

School SES = 3 29.05*** 39.20*** 82.08*** 77.91*** 11.86***
(0.506) (0.603) (1.142) (1.178) (1.078)

School SES = 4 44.82*** 65.23*** 134.3*** 122.1*** 30.27***
(0.635) (0.750) (1.357) (1.420) (1.339)

School SES = 5 53.15*** 79.01*** 166.9*** 151.2*** 57.56***
(1.289) (1.443) (2.538) (2.630) (2.818)

Mother’s Edu: Incomplete Primary -4.213*** 0.235 -1.655 -9.321*** 16.25***
(1.456) (1.737) (3.323) (3.430) (2.888)

Mother’s Edu: Primary -0.757 4.018** 2.099 -4.819 14.84***
(1.430) (1.704) (3.238) (3.348) (2.830)

Mother’s Edu: Secondary 6.147*** 11.08*** 15.17*** 10.40*** 24.08***
(1.427) (1.699) (3.221) (3.329) (2.824)

Mother’s Edu: Technical post Secondary 9.046*** 13.78*** 20.05*** 18.37*** 26.28***
(1.459) (1.734) (3.271) (3.381) (2.899)

Mother’s Edu: College 16.54*** 21.63*** 37.82*** 37.63*** 43.86***
(1.482) (1.760) (3.310) (3.421) (2.959)

Father’s Edu: College 6.973*** 9.051*** 20.59*** 20.08*** 16.39***
(0.451) (0.528) (0.880) (0.913) (0.975)

School type: Subsidized Private -2.134*** -2.407*** -14.71*** -11.13*** -13.03***
(0.315) (0.378) (0.693) (0.710) (0.657)

School type: Non Subsidized Private -1.673 -0.909 -1.440 -1.454 -9.691***
(1.167) (1.298) (2.256) (2.316) (2.555)

Attendance 3.817*** 4.724*** 11.52*** 10.54*** 26.94***
(0.296) (0.356) (0.641) (0.657) (0.614)

Grade Retention before 8th grade -316.3*** -462.2*** -736.7*** -675.2*** -971.5***
(6.754) (8.013) (14.32) (14.95) (13.58)

Constant -90.85*** -185.4*** -611.9*** -512.2*** -1,936***
(27.87) (33.50) (60.30) (61.84) (57.73)

Observations 107,632 107,613 86,817 86,817 107,766
R-squared 0.239 0.303 0.426 0.374 0.166

Note: Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1.

D.2 Second stage parameters
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Table 9: Second Stage Parameters: Point Estimates and Standard Errors

Utility

θ1 0.253 ( 0.0080) θ22 (LikeStudy = 3) 0.001 ( 0.0001) FC2 (λ Group = 3) -0.261 ( 0.0054)

θ02 -2.667 ( 0.0583) FC0 0.195 ( 0.0055) FC3 (λ Group = 4) -0.256 ( 0.0068)

θ12 (LikeStudy = 2) 0.0001 ( 0.0001) FC1 (λ Group = 2) -0.189 ( 0.0058) σfc 0.316 ( 0.0034)
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β
gp
λ

-5.4 ( 0.06) β
pm
λ

-1009.1 ( 10.35) σpm 56.3 ( 0.13)

βsmh
e 4.8 ( 0.73) β

pm
const -563.5 ( 68.63) σpv 53.6 ( 0.14)

βsmh
λ

-589.7 ( 7.36) β
pv
e 10.6 ( 0.69) σgh 71.0 ( 0.16)

βsmh
const -178.0 ( 68.74) β

pv
λ

-1100.7 ( 11.13)
Measures of student effort at high school

αe(effort p) 0.11 ( 0.009) Cut2
sb

3.18 ( 0.907) Cut3sp 4.75 ( 1.035)

αconst(effort p) -10.48 ( 0.883) Cut3
sb

4.36 ( 0.907) βeh
ca (effort) 0.04 ( 0.009)

σatten 3.82 ( 0.007) βeh
sp (effort) 0.05 ( 0.011) βeh

ca (ses s2) 0.00 ( 0.010)

βeh
sb

(effort) 0.04 ( 0.010) βeh
sp (ses s2) 0.04 ( 0.013) βeh

ca (ses s3) 0.06 ( 0.012)

βeh
sb

(ses s2) -0.05 ( 0.011) βeh
sp (ses s3) 0.11 ( 0.014) βeh

ca (ses s4) 0.22 ( 0.014)

βeh
sb

(ses s3) -0.08 ( 0.012) βeh
sp (ses s4) 0.22 ( 0.017) βeh

ca (ses s5) 0.32 ( 0.018)

βeh
sb

(ses s4) -0.01 ( 0.015) βeh
sp (ses s5) 0.40 ( 0.020) βeh

ca (edu fac) 0.03 ( 0.011)

βeh
sb

(ses s5) 0.398 ( 0.02) βeh
sp (edu fac) 0.118 ( 0.01) Cut1ca 1.939 ( 0.87)

βeh
sb

(edu fac) 0.08 ( 0.012) Cut1sp 2.67 ( 1.034) Cut2ca 3.58 ( 0.872)

Cut1
sb

1.83 ( 0.907) Cut2sp 3.64 ( 1.034) Cut3ca 4.56 ( 0.872)

Measures and distribution of the learning skill

αλ
ms1 4.59 ( 0.072) αλ

ms3 3.61 ( 0.078) λ (Group 1) 0.0002 ( 0.00002)

Cut1ms1 0.04 ( 0.006) Cut1ms3 0.96 ( 0.008) λ (Group 2) 0.07 ( 0.001)
Cut2ms1 1.13 ( 0.007) Cut2ms3 1.93 ( 0.009) λ (Group 3) 0.13 ( 0.001)
Cut3ms1 2.49 ( 0.010) Cut3ms3 0.96 ( 0.008) λ (Group 4) 0.20 ( 0.002)

αλ
ms2 3.49 ( 0.072) αλ

ms4 3.19 ( 0.067) π1 0.25 ( 0.016)

Cut1ms2 0.43 ( 0.007) Cut1ms4 0.53 ( 0.007) π2 0.33 ( 0.016)
Cut2ms2 1.45 ( 0.008) Cut2ms4 1.44 ( 0.007) π3 0.31 ( 0.016)
Cut3ms2 2.68 ( 0.013) Cut3ms4 2.14 ( 0.008) π4 0.10

Note: the estimated parameters for the unobserved types probabilities are: p1, p2 and p3, where π1 = p1
p1+p2+p3+1

. In these cases the

reported standard error refer to pi. Notice that θ
t(i)
2 = exp

(

θ02 + θ12 ∗ 1(LikeStudyt(i) = 2) + θ22 ∗ 1(LikeStudyt(i) = 3)
)

.
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D.3 Model fit

Table 10: Simulated Final-score Cutoffs using Different Initial Guesses

Initial Guess (r0)

0.5 ∗ rdata 0.6 ∗ rdata 0.7 ∗ rdata 0.8 ∗ rdata
University r0 r1 r0 r1 r0 r1 r0 r1

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 225.00 460.11 270.00 460.11 315.00 460.11 360.00 460.11
3 249.40 507.04 299.28 507.03 349.16 507.04 399.04 507.04
4 270.60 545.53 324.72 545.53 378.84 545.53 432.96 545.53
5 292.40 583.82 350.88 583.82 409.36 583.82 467.84 583.82
6 304.90 605.34 365.88 605.34 426.86 605.34 487.84 605.34
7 319.80 631.03 383.76 631.03 447.72 631.03 511.68 631.03
8 332.50 652.21 399.00 652.22 465.50 652.21 532.00 652.21
9 350.50 681.74 420.60 681.73 490.70 681.74 560.80 681.74

0.9 ∗ rdata rdata 1.1 ∗ rdata 1.2 ∗ rdata
University r0 r1 r0 r1 r0 r1 r0 r1

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 405.00 460.11 450.00 460.12 495.00 460.12 540.00 460.12
3 448.92 507.04 498.80 507.05 548.68 507.04 598.56 507.04
4 487.08 545.53 541.20 545.55 595.32 545.53 649.44 545.53
5 526.32 583.82 584.80 583.82 643.28 583.82 701.76 583.82
6 548.82 605.34 609.80 605.34 670.78 605.34 731.76 605.34
7 575.64 631.03 639.60 631.02 703.56 631.02 767.52 631.02
8 598.50 652.21 665.00 652.21 731.50 652.21 798.00 652.21
9 630.90 681.74 701.00 681.74 771.10 681.74 841.20 681.74

Note: r0 refers to the initial guess and r1 is the final-score cutoff to which the algorithm
converges. Moreover, rdata is the guess – coming from data – that it is considered when the
model is simulated. The table shows the final-scores of equilibrium starting from seven new
initial guesses and starting from rdata.
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Figure 7: Final-score Cutoffs for 2009 University Admissions Process
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Figure 8: Tests 2006
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Figure 9: Tests 2004
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Table 11: Model Fit about the Prediction on Taking the Admission Test

Fraction of correctly Fraction of students simulated
predicting choice as taking the test

All 0.70 0.78
Female 0.71 0.77

Male 0.70 0.78

SES 1 0.54 0.66

SES 2 0.60 0.71

SES 3 0.78 0.83

SES 4 0.91 0.92

SES 5 0.96 0.97

Note: the fraction of correctly predicting choice considers both the students who are
simulated as taking the test and in the data they also do so, and the students who are
simulated as not taking the test and in the data they neither do so.
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E Counterfactual experiments

E.1 Impact of the SES-quota System

Figure 10: Impact of SES-quota System on Universities’ Socioeconomic Composition
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Figure 11: Impact of SES-quota System on Tests by SES and Universities
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Figure 12: Impact of SES-quota System on who is Taking the PSU
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E.2 Impact of Increasing GPA weight on Final Score

Figure 14: Impact of Changing GPA Weight from 0.4 to 0.5 on Universities’ Socioeco-
nomic Composition
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Figure 15: Impact of Changing GPA Weight from 0.4 to 0.7 on Universities’ Socioeco-
nomic Composition
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Figure 16: The Impact on Effort of Changing GPA Weight
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