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a b s t r a c t 

We derive the optimal concession contract for an airport where the concessionaire’s effort 

impacts either non-aeronautical revenue (shops, restaurants, parking lots and hotels) or 

aeronautical revenues (passenger and airline fees). Our first model assumes that demand 

for the infrastructure is exogenous whereas demand for non-aeronautical services depends 

both on passenger flow and on the concessionaire’s effort and diligence. We show that the 

optimal principal-agent contract separates exogenous and endogenous risks. First, the term 

of the concession varies inversely with passenger flow, so that the concessionaire bears no 

exogenous demand risk. Second, the concessionaire bears part or all of non-aeronautical 

risk, which fosters effort. We also study a model where the concessionaire’s effort affect s 

demand for aeronautical services and focus on the case where the contract includes a de- 

mand trigger for investment as an incentive. Both optimal contracts can be implemented 

with a Present-Value-of-Revenue (PVR) auction in which firms bid on the present value of 

aeronautical revenue and the concession ends when the bid is collected. PVR auctions have 

been used to auction airport PPP contracts in Chile, and demand triggers for investment 

have been used both in Brazil and Chile. 

© 2018 Elsevier Ltd. All rights reserved. 

 

 

 

 

1. Introduction 

“What sets airports apart from most investments in infrastructure is their dual income stream: they bring in money

both on the aeronautical side (landing fees, contracts with carriers) and from passengers (parking, shopping, hotels).

If you own a toll road and traffic dwindles, there’s not much you can do. But with an airport there are lots of levers

to pull, such as cutting capital costs, firing staff and upping the price of parking.”

The Economist, June 6th, 2015.
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In recent years PPPs have become the main mechanism for airport procurement. 2 , 3 Indeed, according to the PPIAF

database, in 2014 there were 141 airport PPPs around the world ( Farrell and Vanelslander, 2015 ). One of the main fea-

tures of an airport PPP is that it has two sources of revenue, aeronautical (e.g. landing or airport fees) and non-aeronautical

such as sales in duty-free shops, restaurants, airport hotels, parking and rental cars. Recent data show that non-aeronautical

revenues represent 40% of global airport revenues ( Calleja, 2017 ) and that the contribution of non-aeronautical services to

total profits is even larger ( Graham, 2009 ). 

The main advantage of PPPs over public provision of airport services is that they provide better incentives to attract

demand, allocate risks and foster innovation. In this paper we study airport PPP contracts that provide optimal incentives to

the concessionaire. In the first model, demand for non-aeronautical services is responsive to non-observable effort exerted

by the concessionaire. In the second model, the concessionaire’s effort affect s the demand for aeronautical services. The first

model corresponds to a monopoly airport, while the second model analyzes airports that compete in facilities investment.

Both types of airports are important. Many airports face little competition and our first model is relevant in this case.

By contrast, hub airports as well as some regional airports, compete with each other. In these cases our second model is

relevant. 4 

In our first model, a risk neutral planner hires a risk-averse concessionaire to build and operate an airport. 5 The con-

cessionaire can exert costly effort which increases ancillary revenue per passenger with positive probability. Each passenger

pays a user fee and aeronautical revenue is random, exogenous and price inelastic. These assumptions allow us to focus on

the optimal incentive and risk sharing contract while abstracting from explicit pricing considerations. 6 

We find that the optimal airport contract when effort affects non-aeronautical revenue has three characteristics. First,

the concessionaire does not bear any of the demand risk caused by exogenous variations in passenger volume. 7 Second, the

concessionaire bears ancillary profit risk, which provides incentives to invest in ancillary services and exert costly effort.

Third, the contract can be implemented with a present-value-of-revenue (PVR) auction in which participants bid on the

present value of aeronautical revenue and there is a proportional sharing rule for non-aeronautical revenues. Note that the

bidding variable does not include the proceeds of ancillary revenues. As in other PVR contracts, the duration is variable and

the concession ends when the concessionaire collects aeronautical fees equal to the winning bid. 

To understand the economics of the optimal contract, assume first that exogenous aeronautical revenue is the only source

of income. As we have shown elsewhere (see Engel et al., 2001; Engel et al., 2013 ), in this case it is optimal to allocate the

concession to the lowest PVR bid. The concession ends when the bid revenue has been collected. Because the concessionaire

is risk averse and demand risk is exogenous, it is optimal to fully transfer risk to the planner. 

Now add ancillary services to the concession and note that the number of potential customers is roughly proportional to

the number of passengers at the airport, as documented in Calleja (2017) . 8 The reason is that passengers visit an airport with

the primary objective of traveling and that parking or buying in the shops at the airport is at most a subsidiary objective.

The optimal contract exploits the high correlation between the two types of airport PPP revenues by tying the term of

the concession for non-aeronautical services to the term of the concession for aeronautical services and thus making it

also variable. As the term of the concession of non-aeronautical services is variable (it is part of the same contract), the

revenue from these services depends only on effort and investment, and thus under the contract the concessionaire bears

no exogenous demand risk. 

At the same time, once a passenger is at the airport, she will spend more, on average, if the concessionaire dedicates

resources to increase demand for non-aeronautical services. Finding the right combination of service types and service

providers is a problem similar to that of managing a shopping mall and can have a significant impact on overall profits.

Thus the demand for non-aeronautical services has an endogenous random component, which depends on the concession-

aire’s investment and effort. As is standard in principal-agent model, the optimal contract is such that the concessionaire

receives more revenue and profits if the project succeeds. But because exogenous risk can be fully separated from the en-

dogenous risk component by varying the term of the concession, the variation in the reward of the concessionaire depends

only on the fate of the ancillary project and not on the realization of the exogenous demand component. 9 Thus the regulator

can exploit the relation between demand for aeronautical and non-aeronautical services to concession both services using
2 On airport reform and privatization see, for example, Gillen (2011) and Winston and de Rus (2008) . 
3 Engel et al. (2014) define a PPP as “an agreement by which the government contracts a private company to build or improve infrastructure works 

and to subsequently maintain and operate them for an extended period in exchange for a stream of revenues during the life of the contract.” Under this 

definition the concessionaire is remunerated with a combination of user fees and government transfers. 
4 Czerny et al. (2016b) show that airport demand is responsive to rental car prices while Ivaldi et al. (2015) find that demand is responsive to parking 

charges. Both these cases can be incorporated into our second model as a form of effort by the concessionaire. 
5 Assuming a risk averse concessionaire and a risk neutral government is standard when applying principal-agent models to PPPs. See, for example, 

Martimort and Pouyet (2008) ; Iossa and Martimort (2012) and Iossa and Martimort (2015) . 
6 The latter assumption can be relaxed as shown in the working paper version of Engel et al. (2013) (see http://www.nber.org/papers/w13284 ). 
7 Demand risk may be macroeconomic or due to variations in regional growth, but if the airport has few close-by substitutes, passenger demand is 

exogenous from the point of view of the concessionaire. 
8 This a common assumption in the theoretical literature, see Zhang and Zhang (1997) . 
9 The intuition is obvious in the case of no discounting. In that case, the contract always ends when a predetermined number of passengers have 

arrived. These passengers are exposed to the investment effort of the concessionaire in ancillary services, and thus their demand for ancillary services is 

endogenous to the concessionaire’s effort. 

http://www.nber.org/papers/w13284
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a single auction. Moreover, in a competitive auction, the rents of the concessionaire from both services can be extracted

efficiently. The authority sets optimal prices for aeronautical services and the concessionaire uses take-it-or-leave-it auctions

(see Kidokoro et al., 2016 ) for non-aeronautical services. 

A second feature of the optimal contract is that it can be implemented with a PVR auction, where participants bid on the

present value of aeronautical revenue only. To explain the intuition for this result we first note that a competitive auction

with symmetric bidders always extracts all rents. To implement the optimal contract, however, the bidding variable must

replicate the contract described above by not assigning exogenous demand risk to the concessionaire and providing efficient

incentives to exert effort. This is the case when participants bid on the present value of aeronautical revenue. In contrast,

if firms bid on the minimum airport fee in a fixed term contract (or alternatively on the shortest concession term), the

concessionaire is forced to bear exogenous demand risk and the contract is not optimal. Alternatively, if participants bid on

total discounted revenues from both aeronautical and non-aeronautical services, the incentives to exert effort disappear. The

reason is that in this case successful effort shortens the contract but does not change total discounted revenues, which are

fixed and equal to the winning bid. 

We also examine a specific case of airports with endogenous demand for aeronautical services. In this case, which is

applicable to hub airports or other airports that face competition, the PPP owner can increase demand through effort and

the question is how to provide incentives to the concessionaire to increase demand optimally. The situation we model

is similar to the Sao Paulo airport PPP contract, which includes a trigger that requires additional investments once demand

exceeds a threshold. The additional investment by the PPP can be interpreted as a reward for successfully increasing demand

because the additional investment is usually very profitable for the PPP. In this setting, we find the optimal PPP contract

and we show that, as in the case of the first model, it can be implemented by a PVR auction. 

The key characteristic of the utility function that drives our results in both cases — demand for non-aeronautical services,

and effort-responsive demand for the airport itself—is that the agent wants to exert more effort when his net income falls

(i.e. in equilibrium effort is decreasing in net income). Then there is no tradeoff between effort and rent extraction and the

planner can stimulate the agent’s effort by auctioning the concession to the lowest bid in aeronautical revenues. 

Our paper contributes to a large literature that studies the complementarity between infrastructure and ancillary ser-

vices in airports. One strand of the literature characterizes efficient pricing across aeronautical and non-aeronautical rev-

enues. In an early paper, Zhang and Zhang (1997) showed that a regulatory authority with a break-even constraint may

want to cross-subsidize airport operations with revenues from commercial services. 10 Similarly, Kratzsch and Sieg (2011) ex-

amined the regulation of airports with market power. They show that when there is sufficient complementarity between

aeronautical and non-aeronautical revenues, the monopolist will charge less than the monopoly price for aeronautical ser-

vices. Gillen (2011) noted that an airport is a two-sided platform where passengers and airlines meet. Therefore neither

cost-based pricing for airline services is optimal in general, nor are prices above marginal costs evidence of market power.

Ivaldi et al. (2015) tested whether hub airports are double sided markets, and how airports can maximize profits by act-

ing on both sides of the market. Czerny et al. (2016a) in turn, examined the optimal regulation of monopoly airports with

both aeronautical and non-aeronautical revenues. They compared single-till and dual-till regulation, and examined the con-

ditions under which one type of regulation dominates the other. 11 Wan et al. (2015) studied how congestion in termi-

nals and on the runways interact and how concession revenues affect the optimal pricing to deal with congestion. Last,

Zhang et al. (2010) examine how airports and airlines can share non-aeronautical revenue to attract traffic and increase

joint profits. 12 

A second strand of the literature, which is closely related to the first, studies the optimal regulation of an airport with

market power. For example, Yang and Zhang (2011) investigated single and dual till regulation with a price-cap in a con-

gested airport where airlines have market power. Yang and Fu (2011) compared the performance of ex ante price-cap regu-

lation with ex post light-handed regulation when demand is uncertain. Oum et al. (2004) studied the interaction between

concession profits and aeronautical price regulation and concluded that while rate-of-return regulation may lead to over-

investment in capacity, price-cap regulation is prone to under-investment. 

A third strand of the literature studies the interaction between aeronautical and non-aeronautical services and investment

decisions. For example, Zhang and Zhang (2010) studied airport decisions on pricing and capacity investment with both

aeronautical and concession operations when airlines have market power. Xiao et al. (2017) analyzed the effect of demand

uncertainty on airport investment decisions and how they interact with concession revenue. Kidokoro et al. (2016) , in turn,

studied jointly optimal investments in aeronautical and non-aeronautical capacity. Last, Xiao et al. (2017) modeled airport

capacity choice when a real option for expansion can be purchased. 13 

In our previous work ( Engel et al., 2001; 2013 ) we studied PPPs with a single and exogenous source of revenue and

found conditions under which a PVR contract is optimal. Here we complement this literature by considering the case with
10 But see Kidokoro et al. (2016) . 
11 Under the single till principle of airport regulation, both aeronautical and non-aeronautical revenues are considered when regulating airport charges. 

Under the dual till principle, by contrast, only aeronautical revenues are considered. 
12 See also Fu and Zhang (2010) and Zhang and Zhang (2010) . 
13 Quite a number of papers have investigated airport capacity investment. See for example Zhang and Zhang (2003) , Oum and Zhang (1990) , 

Oum et al. (2004) , Basso and Zhang (2007) , Basso and Zhang (2008) , Zhang and Zhang (2010) and Xiao et al. (2017) . 
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two sources of revenues and moral hazard, and show how a PVR auction can be used to implement the optimal contract in

this environment. 

Several papers study the principal-agent relationship in a PPP contract; see, for example Bentz et al. (2005) ,

Martimort and Pouyet (2008) , Iossa and Martimort (2011) , Iossa and Martimort (2012) , Iossa and Martimort (2015) and

Auriol and Picard (2013) . Our paper contributes to this literature with an analysis that separates and optimally distributes

endogenous and exogenous risks in transport PPPs by exploiting the intertemporal nature of a concession contract. We are

not aware of other studies of optimal PPP contracts where there is ancillary revenue. 

Several airports PPP contracts in Chile and Brazil include features we examine here. Major airports in both countries have

had triggers for additional investment in exchange for term extensions, as in our second model. In Chile, several airports in

major cities have been awarded on the basis of PVR contracts like the one derived here. 14 

Finally, our paper is related to the literature on the economics of malls. Malls obtain their income from their contracts

with storeowners, and must therefore provide efficient incentives for effort by these agents. However, in the case of malls,

there is the additional problem of attracting consumers to a mall. Thus demand is endogenous, as in our second model; see,

for instance, Pashigian and Gould (1998) , Gould et al. (2005) , Ivaldi et al. (2015) and Ersoy et al. (2016) . 

The remainder of the paper is organized as follows. The next section develops the model and the main results for the

case where effort affects demand for non-aeronautical services, the third section studies airports where effort impacts on

the demand for aeronautical servces and the final section concludes. 

2. Effort and non-aeronautical revenue 

A risk-neutral benevolent social planner must design a contract for a public-private partnership to provide infrastructure

services that are contractible. 15 Demand for these services is exogenous and the concessionaire collects a fee from users.

The concessionaire also receives ancillary revenues, which increase both with costly effort and with demand for the infras-

tructure services. For example, in the case of an airport, landing fees correspond to user fees while shopping and parking

revenues are examples of ancillary revenues. 

The planner hires a concessionaire to finance, build and operate the facility. The technical characteristics of the facility

are exogenous, there are neither maintenance nor operation costs, the up-front investment does not depreciate, and there

are many identical risk-averse expected utility maximizing firms with preferences represented by the strictly concave utility

function u that can build the project at cost I > 0. 16 

Demand for infrastructure services is uncertain and described by a probability density over the present value of user

fee revenue that the infrastructure can generate over its entire lifetime, v . This density does not depend on actions of the

concessionaire and is defined over v min ≤ v ≤ v max and denoted f ( v ), with c.d.f. F ( v ). 17 This density is common knowledge to

firms and the planner, and satisfies v min ≥ I so that the project is self-financing in all states of demand. Also, for simplicity

we assume that v equals the present value of private willingness to pay for the project’s services. 

While the exogenous demand assumption does not apply to important metropolitan airports that compete with each

other, or for airports well served by high speed rail links to other cities, it is a reasonable assumption for other airports

where there are no other efficient alternatives. In the Appendix we provide some facts that show that these airports repre-

sent a large fraction of travel worldwide. 

The concessionaire exerts non-observable effort e ≥ 0 before the facility begins operating. With probability p ( e ) this gen-

erates non-aeronautical revenue θv , observable to the planner; otherwise it generates no value. The positive constant θ is

common knowledge. 18 That is, the extensive margin of the PPP (e.g., the number of potential shoppers in the case of an

airport) is determined by the exogenous demand component, but the intensive margin (how much each potential shopper

buys) depends on the concessionaire’s effort, f or inst ance, the mix of shops, or the bargaining effort with independent shops.

The intuition behind this formulation is that sales at airport stores depend mainly on the demand for the terminal where

the store is located: It is uncommon to choose a restaurant at an airport for dinner on a Saturday night. Thus, given effort,

there is a proportionality between the demand for the shops and the demand for the airport, the two sources of revenue
19 
for the concessionaire. 

14 In the case of El Tepual airport of Puerto Montt, in Chile, the best bid for a short term franchise that began in 2014 asked for zero user fees, and thus 

all revenues are ancillary. 
15 This assumption is reasonable in the case of an airport while less so for health and educational services. 
16 If the cost I depends on the firm, a second price auction leads to a rent for the winning firm equal to the cost difference with respect to the second 

most efficient firm. By the revenue-equivalence theorem of auction theory, this rent cannot be reduced. For simplicity we assume identical costs in the 

model. 
17 We also assume that demand is perfectly inelastic to prices. In previous papers (see working paper version of Engel et al., 2013 ), we have shown that 

removing this assumption does not affect the main economic results. 
18 This simplification of the effects of effort on project value is standard in the literature. 
19 We are assuming that all the value generated by a successful effort is appropriated by the firm that builds the facility, that is, that owners of ancillary 

businesses obtain no rents. With symmetric shopowners, this will be the case when ancillary businesses are allocated via the often used mechanism 

of take-it-or-leave-it offers, as long as information on shop owner’s cost structure is known to the firm building the facility ( Kidokoro et al., 2016 ). The 

assumption also holds when shopowners are selected via a competitive auction. 
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Denote by R f ( v ) and R s ( v ) the total revenue received by the concessionaire under failure and success, respectively.

Thus R s ( v ) represents user fees plus sales revenue while R f ( v ) corresponds to user fees only. Since the planner can

observe whether the concessionaire is successful, the contract specifies two schedules { R f ( v ), R s ( v )}, with R f ( v ) ≤ v and

R s (v ) ≤ (1 + θ ) v , since we rule out subsidies by assumption. In each case, the planner receives the complement: v − R f (v )
if she fails and (1 + θ ) v − R s (v ) if she succeeds. 

The probability of success depends on the effort exerted by the concessionaire. More formally, the probability of success,

given effort e ≥ 0, is denoted p ( e ) and satisfies 0 ≤ p ( e ) < 1, p ′ > 0 and p ′ ′ < 0. The cost of effort is linear in effort: ke , with

k > 0. 

2.1. Planner’s problem 

The planner faces the problem of designing a contract for a concessionaire who will operate and maintain the infrastruc-

ture, while at the same time providing him with incentives to exert the efficient amount of effort. 

We assume that, as in Laffont and Tirole (1993 , Ch. 1), the regulator puts no value on the rents of the concessionaire.

Reasons may be redistributive concerns or that the private party is foreign-owned. Thus the planner ignores the welfare of

the concessionaire in the maximand, the participation constraint holds with equality and the planner solves 

max 
{ R f (v ) ,R s (v ) ,e } 

p(e ) 

∫ 
[(1 + θ ) v − R s (v )] f (v ) dv + (1 − p(e )) 

∫ 
[ v − R f (v )] f (v ) dv (1)

s.t. u (0) + ke = p(e ) 

∫ 
u (R s (v ) − I) f (v ) dv + (1 − p(e )) 

∫ 
u (R f (v ) − I) f (v ) dv , (2)

e = argmax 
e ′ ≥0 

{ 

p 
(
e ′ 
) ∫ 

u ( R s ( v ) − I ) f ( v ) dv + 

(
1 − p 

(
e ′ 
)) ∫ 

u 

(
R f ( v ) − I 

)
f ( v ) dv − ke ′ 

} 

, (3)

0 ≤ R s (v ) ≤ (1 + θ ) v , (4)

0 ≤ R f (v ) ≤ v , (5)

e ≥ 0 , (6)

where we use the convention that integrals with respect to v with no explicit lower and upper limits are over the entire set

of values taken by this variable, that is, from v min to v max . 

The planner maximizes the net expected value of the project, which in demand state v is equal to p(e )[(1 + θ ) v −
R s (v )] + (1 − p(e ))[ v − R f (v )] . The first and second constraints are, respectively, the participation constraint and the incen-

tive compatibility constraint (ICC) of the concessionaire. The third and fourth constraints are the no-subsidy constraints. 

The solution is found by solving the same problem without imposing the no-subsidy constraints (4) and (5) . In this

simplified problem, the planner’s decision variables enter symmetrically, hence the corresponding first order conditions will

not depend on v and we may denote R f (v ) = R f and R s (v ) = R s for all v , obtaining a much simpler problem because the

number of decision variables has decreased substantially. 20 Next we solve this simpler problem and show that the solution

satisfies the no-subsidy constraints and therefore also solves the original problem. We assume that R s ≤ (1 + θ ) R f , which is

equivalent to putting a lower bound on the degree of risk aversion of the concessionaire. 21 

A second important assumption is that we can use the first order conditions of the incentive compatibility constraint in-

stead of the original constraint; this will be useful in Section 2.3 . Thus, denoting v ≡ ∫ 
v f (v ) dv we can rewrite the planner’s

problem as: 22 

max 
{ R f ,R s ,e } 

p(e )[(1 + θ ) v − R s ] + (1 − p(e ))[ v − R f ] (7)

s.t. u (0) + ke = p(e ) u (R s − I) + (1 − p(e )) u (R f − I) , (8)
20 Formally we are using the following result: Consider maximizing a real valued function F ( x, y ), defined over R 2 n , subject to k constraints L i (x, y ) = 0 , i = 

1 , 2 , . . . k, where x, y ∈ R n . Assume F and the L i are symmetric in the components of x and in the components of y , that is, if ˜ x , ˜ y ∈ R n denote permutations 

of x, y ∈ R n , then F (x, y ) = F ( ̃ x , ̃  y ) and L i (x, y ) = L i ( ̃ x , ̃  y ) , i = 1 , . . . , k . Then, if there exists a unique solution to the maximization problem, ( x ∗ , y ∗), all the 

coordinates of x ∗ will take the same value and all the coordinates of y ∗ will take the same value. The proof follows from noting that if ( x ∗ , y ∗) satisfies the 

first-order conditions then the vector with permutations ( ̃ x , ̃  y ) also satisfies the first-order conditions. In our model, the role of x is played by the R f ( v ) and 

the role of y by the R s ( v ), where v varies over all possible realizations. 
21 We need this assumption to ensure that the solution to the simpler problem described above also solves the problem of interest. 
22 To go from (1) to (7) , and from (2) to (8) , we use that R s and R f do not depend on v and the definition of v . The transition from (3) to (9) also considers 

the first-order condition. 
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k = p ′ ( e ) 
[
u ( R s − I ) − u 

(
R f − I 

)]
, (9) 

e ≥ 0 . (10) 

2.2. Optimal contract under public provision 

Following Hart (2003) , where PPPs are characterized as long term contracts with bundling of activities, in our setting

a PPP is a contract in which the concessionaire decides how much effort to exert during the construction phase and can

share in the extra revenues that result, i.e., it bundles the construction and operational phases. In the public sector it is

standard to separate construction from operation. It is therefore natural to define ‘public provision’ as the case where it is

not possible to provide compensation for unobservable effort during construction. 

It is straightforward to show that under public provision the optimal contract sets e = 0 , since the planner cannot transfer

rents to the concessionaire. 23 Hence there is no incentive o for the concessionaire to bear demand risk and thus the optimal

contract sets R f = R s = I. 24 

Proposition 1. Under public provision R s = R f = I. The concessionaire bears no risk and exerts no effort. 

2.3. Improving on public provision 

We begin by finding conditions that ensure that a PPP contract improves upon public provision. To this effect we define

e ∗ > 0 as the level of effort needed to satisfy the incentive compatibility constraint (9) when R f = I and R s = (1 + θ ) I: 

k = p ′ (e ∗)[ u (θ I) − u (0)] . (11) 

This combination of effort and revenues will improve upon public provision if it increases the planner’s objective function

(7) and satisfies the concessionaire’s participation constraint (8) . The first condition is easier to satisfy when the probability

of success is very responsive to increases in effort so that welfare gains from an increase in effort are large. By contrast, the

second condition is easier to satisfy when the probability of success is unresponsive to increases in effort. 

It follows from (7) that the increase in consumer surplus is equal to: 

�CS = { p(e ∗)[(1 + θ ) v − (1 + θ ) I] + (1 − p(e ∗))[ v − I] } − { p(0)[(1 + θ ) v − I] + (1 − p(0))[ v − I] } 
= (p(e ∗) − p(0)) θv − p(e ∗) θ I 

≥ p ′ (e ) eθv − p(e ) θ I, 

where the inequality uses concavity of p ( e ). It follows that consumer surplus increases if 

p ′ (e ∗) e ∗

p(e ∗) 
≥ I 

v 
. 

From (8) it follows that the concessionaire’s participation constraint will hold if 

p(e ∗)[ u (θ I) − u (0)] ≥ ke. 

Substituting k by the expression that follows from (11) yields 

p ′ (e ∗) e ∗

p(e ∗) 
≤ 1 . 

We have established the following result: 

Lemma 1. Denote by η( e ) ≡ p ′ ( e ) e / p ( e ) the effort-elasticity of the probability of success and define e ∗ via (11) . Assume 

I 

v 
< η(e ∗) ≤ 1 . 

Then the contract with zero effort and R f = R s = I is not optimal and there exists a PPP contract with strictly positive effort

that does better than public provision. 
23 Here we denote by public provision the approach of Hart et al. (1997) . For simplicity we consider the extreme case where the division of authority 

leads to zero effort. 
24 Note that this contract satisfies the planner’s problem described in (7) –(10) . Since e = 0 is a corner solution, the first order condition from the incentive- 

compatibility constraint (10) must be replaced by the original constraint (before taking the first order condition), which is satisfied by the solution offered. 
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2.4. Optimal contract under PPP 

Next we fix 0 ≤α ≤ 1 and find the optimal contract among those that set R s (v ) = (1 + αθ ) R f (v ) , that is, among those

contracts where the concessionaire receives a fraction α of ancillary revenues in return for effort. We refer to this contract

as the “optimal α-contract.” We only consider values of α for which the optimal contract entails strictly positive effort and

from Lemma 1 we know when this is the case for α = 1 . We also show that the optimal α-contract can be implemented

with a simple auction. 

First, observe that by competition among bidders we must have that the efficient values of R f satisfies: 

I 

1 + αθ
< R 

∗
f < I. 

The second inequality holds because otherwise, from (9) we have R s > R f , and the concessionaire would make non-

negative profits in both states, even with no effort, which is incompatible with competition. The first inequality holds be-

cause otherwise the concessionaire would have losses even when successful. The inequality is strict because even in the

case with no effort, p (0) < 1, i.e., there is a positive probability of failure. 

The next step in the proof is to find conditions under which, given α, there is a strictly decreasing relationship between

effort e and the reward R f . We denote by e ( R f ) the solution to the incentive compatibility conditions (12) , i.e., e ( R f ) solves 

k = p ′ (e )[ u ((1 + αθ ) R f − I) − u (R f − I)] . (12)

If we can find conditions ensuring that the expression within the square parenthesis u ((1 + αθ ) R f − I) − u (R f − I) is

decreasing in R f , then p ′ ( e ) must be increasing for the equation to continue to hold. By the properties of p , this requires that

e be decreasing in R f . Thus, we have found a condition ensuring that e ′ ( R f ) < 0. To simplify the notation, let R α ≡ (1 + αθ ) R f ,

for α ∈ [0, 1]. 

Definition 1. Let ρ(z) = −zu ′′ (z) /u ′ (z) be the coefficient of relative risk aversion of the concessionaire. 

Lemma 2. A sufficient condition for e ′ ( R f ) < 0 is that 

ρ(R α − I) > 

αθ

(1 + αθ ) 
, ∀ R α ∈ [ I, (1 + αθ ) I] . 

Proof. Let 

J(R α, θ ) ≡ u ((1 + αθ ) R f − I) . 

Since J ∈ C 2 , it is submodular if 

∂ 2 J 

∂ R f ∂ θ
(R f , θ ) < 0 , 

Since this condition is satisfied, 

J(R α, θ ) − J(R α, 0) = u ((1 + αθ ) R f − I) − u (R f − I) 

is decreasing in R f . By the reasoning following (12) , this implies that e ′ ( R f ) < 0. Thus we require conditions ensuring that 

∂ 2 J 

∂ R f ∂ θ
(R f , θ ) < 0 . 

Now, 

∂ 2 J 

∂ R f ∂ θ
(R f , θ ) = αR αu 

′′ (R α − I) + αu 

′ (R α − I) 

and thus, for this expression to be negative, we require 

−R αu 

′′ (R α − I) 

u 

′ (R α − I)) 
> 1 	⇒ ρ(R α − I) > 

R α − I 

R α

Thus 

ρ(R α − I) > 1 − I 

(1 + αθ ) R f 

. 

As R f < I , we can replace the RHS by the stricter condition 

ρ(R α − I) > 1 − 1 

1 + αθ
= 

αθ

1 + αθ
. 

Hence this condition ensures that e ′ ( R f ) < 0. �
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The intuition for Lemma 2 is that incentives for effort are blunted as the reward in the case of failure increases. Given

α ∈ (0, 1], we can rewrite both the planner’s and the firm’s utility, when the Incentive Compatibility Constraints (ICC) holds,

as functions of R f : 

V (R f ) = [1 − p(e (R f ))]( v − R f ) + p(e (R f ))[(1 + θ ) v − (1 + αθ ) R f ] , (13) 

U(R f ) = p(e (R f )) u ((1 + αθ ) R f − I) + [1 − p(e (R f ))] u (R f − I) − ke (R f ) . (14) 

We have 

V 

′ (R f ) = θ p ′ (e (R f )) e 
′ (R f )[ v − αR f ] − 1 − αθ p(e ) 

which implies that V 

′ ( R f ) < 0 for R f ∈ (I/ (1 + αθ ) , I) . Also, using the ICC we have that U 

′ ( R f ) simplifies to: 

U 

′ (R f ) = αθ p(e (R f )) u 

′ ((1 + αθ ) R f − I) + (1 − p(e (R f ))) u 

′ (R f − I) > 0 . 

The fact that the utility functions of the planner and the concessionaire are monotone functions of R f , the first decreasing

and the second increasing, is a key property of the problem, and uncommon in more general moral hazard settings. This

fact explains why the solution we obtain has a relatively simple characterization and why it can be implemented with a

simple competitive auction. 

We showed before that bidding competition implies that U(I/ (1 + αθ )) ≤ u (0) < U(I) . 25 By continuity and because

U 

′ ( R f ) > 0, U(I/ (1 + αθ )) < u (0) and U ( I ) > u (0), there exists a unique R ∗
f 

∈ (I/ (1 + αθ ) , I) that solves U(R f ) = u (0) . This value

of R f solves the planner’s problem: smaller values do not satisfy the firm’s participation constraint (this follows from U 

′ > 0)

while larger values lead to lower social welfare (this follows from V 

′ < 0). As R ∗
f 

< I it also satisfies the self-financing con-

straint R ∗
f 

≤ v , which we had omitted when solving the problem. We also have R s = (1 + αθ ) R f ≤ (1 + θ ) v . The associated

level of effort along the ICC is e ∗ = e (R ∗
f 
) > 0 . Maximizing this solution over α ∈ [0, 1] we obtain the optimal contract, with

R ∗
f 

< I. 

Proposition 2. Assume α ∈ (0, 1] fixed and ρ(c) > θ/ (1 + θ ) , ∀ c ∈ [0 , θ I] . Also assume that optimal effort is strictly positive, and

denote by R ∗
f 
(α) the unique solution to the planning problem. We then have that R ∗

f 
(α) is the unique solution to U(R f ;α) = u (0)

and the planner’s solution is obtained by finding the value of α for which V (R ∗
f 
(α) ;α) is maximum. 26 Furthermore, if the

condition of Lemma 1 holds, there exist values of α for which the contract thus obtained is better than the optimal contract under

public provision. 

The proposition implies that the contract that solves the program (7) –(10) is obtained by finding the value of α ∈ (0, 1]

for which the optimal α-contract attains the highest social welfare. The solution to this program must entail positive effort,

since a value of α for which the optimal contract entails zero effort is dominated by public provision, which in turn is

dominated by a contract with strictly positive effort, as shown in Lemma 1 . 

The optimal effort level in the solution of the planner’s problem will depend on the response of the probability of success

to effort, p ( e ), and on the sharing rule, α. In the optimal contract, the concessionaire does not assume exogenous risk, i.e.,

risk that depends on the demand for the project. However, the firm assumes endogenous risk, because the ancillary revenue

depends on the effort e made by the private party The extent to which it assumes endogenous risk is determined by the

value of α. Since R ∗
f 

is independent of the state of demand v , and competition leads to U(R f ) = u (0) , 27 we also have that: 

Corollary 1. If the planner sets the optimal value of α, the optimal contract is implemented by any competitive auction where

firms bid on R f , i.e., a Present-Value-of-Revenue (PVR) auction. In this auction firms bid on R f and the lowest bid wins the conces-

sion. The contract lasts until the present value of user fees collected by the concessionaire reaches the value of the winning bid.

Income from ancillary services are not included in the winning bid nor do they influence the duration of the concession contract. 

2.5. Optimal choice of α

This section examines the optimal choice of α, i.e., the share of ancillary revenues that is appropriated by the conces-

sionaire. The optimal choice of this parameter is a difficult problem, because α not only affects the revenues directly, but

also the effort of the concessionaire. Moreover, since the other source of funds for the concessionaire varies exogenously,

the ratio of the two sources of revenue will affect the choice of effort through the risk aversion of the concessionaire. 

We have established conditions under which a small amount of effort is always preferred to zero effort, and thus the

optimal value of α is strictly positive. However, it is difficult to solve the problem analytically, so we use numerical calcu-
25 Recall that u (0) is the outside option. 
26 V ( R f ; α) and U ( R f ; α) are defined by (13) and (14) where now we make explicit the dependence on α. 
27 The fact that U is strictly increasing in R f is crucial here. 
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Fig. 1. Optimal α, R, e and p ( e ) as a function of k . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

lations. We use the utility function u (c) = 

(c+1) (1 −ρ) 

1 −ρ and the probability of success function p(e ) = p 0 e 
γ , 28 which increases

with effort. 29 

The figures below show the planner’s optimal choice of α as a function of k, ρ and p 0 . They also show the value for

R that results from the competitive auction for the franchise contract, the firm’s optimal level of effort and the resulting

probability of success. 

Fig. 1 considers variations in the cost of effort parameter, k . As k increases, the optimal risk sharing arrangement assigns

less risk to the firm, since the benefits of effort in terms of a higher probability of success become more costly. It follows

that α is decreasing in k as shown in the top-left panel. Since the firm bears less risk for larger values of k , the guaranteed

level of income R must grow, as shown in the top-right panel. Also, as shown in the bottom panels and consistent with a

decreasing α, both effort exerted by the firm and the probability of success decrease with k . 

Fig. 2 shows how the optimal values of α, R, e and p ( e ) vary with the degree of risk aversion parameter ρ . The analysis

is very similar to that of Fig. 1 once we notice that the only difference is that in this case it is a higher value of ρ , and not

of k , that makes effort more costly. 

Fig. 3 shows what happens when the probability scaling parameter, p 0 , increases. As shown in the upper-left panel, larger

probabilities of success increase the returns to having the firm bear risk, leading to higher values of α. As p 0 increases, the

firm exerts more effort, the probability of success increases and the guaranteed revenue R decreases, as depicted in the

bottom-left, bottom-right and top-left panels, respectively. Note that the firm assumes more risk as p 0 grows. 

2.6. Practical application 

Typically, optimal contracts in principal-agent models are too stylized and complicated to be implemented in practice. By

contrast, and in an example of practice running ahead of economic theory, a particular case of our optimal airport concession

contract has been implemented several times before this paper was written. Based on the many advantages of PVR auctions
28 Strictly speaking, p(e ) = min (1 , p 0 e 
γ ) 

29 Parameter values common across all figures are: I = 1 , v̄ = 1 . 2 and γ = 0 . 5 . And in the two figures where their value remains fixed we have p 0 = 0 . 3 , 

ρ = 2 and k = 0 . 1 . 
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Fig. 2. Optimal α, R, e and p ( e ) as a function of ρ . 

Table 1 

Airports auctioned with Present Value of Revenue mechanism, ( α = 100% ). 

Airports concession Date (month-year) Winning bid//Investment (MM USD) 

Diego Aracena 2, Iquique 11-2007 12.8/15.3 

El Tepual 2, Puerto Montt 01-2008 15.5/23.4 

Carlos Ibánez, Punta Arenas 11-2009 6.9/13.1 

Aeropuerto de la Araucanía, Temuco ∗ 03-2010 16.3/102.9 

El Loa 2, Calama 01-2011 23.1/58.9 

Cerro Moreno 2, Antofagasta 10-2011 11.2/32.1 

Diego Aracena 3, Iquique 07-2012 0.0/8.0 

La Florida 2, La Serena 09-2012 4.7/6.8 

El Tepual 3, Puerto Montt 02-2014 -1.0/3.8 

Total 89.6/264.3 

Source: Data from Dirección de Concessiones, MOP. We assume 1UF = 39.3USD. When the winning bid 

is zero or negative, the concession term is 48 months. ∗The winner received an annual subisdy of 15.9 

MM USD during eight years. 

 

 

 

 

 

 

for highway concessions, 30 the Chilean government has used auctions where firms bid on the present-value of aeronautical

revenues and the firm that makes the lowest bid is awarded the airport. The resulting flexible term contract ends when

aeronautical revenues collected are equal, in present value, to the winning bid. In these contracts there is no sharing of

non-aeronautical revenues, i.e., α = 100% which would be optimal if the concessionaire’s risk aversion is relatively low. 

Table 1 shows the airports that have been concessioned using PVR contracts on aeronautical revenues with α = 1 . The

winning bid should be interpreted as a lower bound on investments made by the concessionaire, since non-aeronautical

revenues will subsidize investments contemplated in the concession contract. This explains why some of the winning bids

are so low. 
30 See section 3.3 in Engel et al. (2014) for a summary. 
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Fig. 3. Optimal α, R, e and p ( e ) as a function of p 0 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Effort and aeronautical revenues 

We have assumed that the airport concessionaire cannot affect the demand for aeronautical services. However, sometimes

airports compete for passengers either with other major airports or with other modal means of transportation such as fast

trains. In this case, which we consider in this section, an optimal contract should provide incentives to attract demand for

the airport. In this extension we focus on the impact of the concessionaire’s effort on demand for aeronautical services. For

simplicity we ignore non-aeronautical revenues. 31 

The inspiration for our modeling structure are the contracts for airport PPPs in Sao Paulo and Rio de Janeiro in Brazil

and in Santiago de Chile, which are hubs and compete with other hubs. 32 These contracts are fixed term contracts, with

the obligation of mid-period expansion if a congestion trigger is reached. In Santiago’s airport PPP contract, the cost of the

expansion is paid either directly by the government or by reducing the revenues of the government and transferring them

to the concessionaire, or through a mix of both if the revenues are insufficient. 33 The Santiago airport contract tries to

ensure that no rents are collected by the concessionaire by mandating auctions for construction but it is very likely that the

concessionaire can obtain rents by skillfully manipulating the terms of the auction. While the Public Authority can review

the terms of auction for the construction contract, it cannot hope to eliminate all sources of rent. This means that attaining

the demand that triggers the expansion of the airport results in a reward for the concessionaire. Thus the concessionaire

will make investments and effort that increase the likelihood of attracting more passengers. 34 
31 The case where the concessionaire exerts two types of effort, one that affects demand for aeronautical services as in this section and another that 

impacts on demand for non-aeronautical services, as in Section 3 , can be modeled combining insights from this and the preceding section. We have some 

preliminary results for this model, but the expressions obtained are rather complicated and do not add significant economic insight. 
32 Santiago competes against Buenos Aires and Lima, the Brazilian airports compete among themselves. 
33 The condition on congestion appears as point 1.15.1 in the PPP contract and the repayment mechanisms in 1.15.6 of the Santiago Airport PPP contract. 

For the case of the Brazil airports, see Mattos and Tokeshi (2016) . 
34 As one participant in the concessions in the Sao Paulo and Rio airports puts it: 

“They might not compete that often on aeronautical fees (many times regulated anyway) but will offer better deals on VIP rooms, fast-track 

queuing arrangements for business passengers and better management of gate assignment reducing fuel costs by reducing how much airplanes 

have to move around once they land (to name some of the mechanisms used).” Helcio Tokeshi, personal communication. 
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One question is whether this type of contract provides efficient incentives. It is always possible to severely punish the

failure to attain the congestion level, thus inducing the optimal effort level ( Mirrlees, 1974 ). However, these punishments are

rarely seen, because they are very sensitive to the preferences and beliefs of agents, as well as their ability to control the

probability of events ( Holmstron and Milgrom, 1987 ). In a dynamic setting, it is more robust to use linear reward schemes

on variables such as revenue or traffic. 

In our setting the linear demand schemes of Holmstron and Milgrom (1987) translate into a fixed reward when demand

surpasses a given level. There is another dimension in which this type of reward may be appropriate: investment in airport

expansion is not continuous but proceeds by discrete jumps in capacity. Thus the reward structure that we use is consistent

with the technology of airport expansion in response to congestion. 

We assume that an initial effort by the concessionaire increases the probability of higher demand and therefore revenues.

In particular, the c.d.f. of v can be either F 1 or F 2 , with F 1 FOSD F 2 , i.e., F 1 ( v ) ≤ F 2 ( v ), ∀ v , with strict inequality at some v and

where both distributions have common support [ v , ̄v ] . The probability densities corresponding to F 1 and F 2 are denoted by

f 1 and f 2 . We assume that effort increases the probability p ( e ) that v follows F 1 , where 0 ≤ p ( e ) < 1 and p ′ > 0, p ′ ′ < 0. For

simplicity we assume that income from ancillary services is constant (and equal to zero). 

The reward structure is as follows: there is a demand level v s ∈ ( v , ̄v ) that triggers a prize for the concessionaire if v > v s .

If R is the reward when v ≤ v s then R (1 + α) is the reward if v ≥ v s . We show below that the efficient contract in this setting

is induced by a PVR auction. We assume the assumptions made in Section 2 hold for all aspects we have not specified

above, in particular, we assume that the planner maximizes expected consumer surplus. 

The planner’s problem is: 

max { R,e } p(e ) 

{∫ v 

v s 
[ v − (1 + α) R ] f 1 (v ) dv + 

∫ v s 

v 
[ v − R ] f 1 (v ) dv 

}

+(1 − p(e )) 

{∫ v 

v s 
[ v − (1 + α) R ] f 2 (v ) dv + 

∫ v s 

v 
[ v − R ] f 2 (v ) dv 

}
(15) 

s.t. u (0) + ke ≤ p(e ) 

{∫ v 

v s 
u ((1 + α) R − I) f 1 (v ) dv + 

∫ v s 

v 
u (R − I) f 1 (v ) dv 

}

+ (1 − p(e )) 

{∫ v 

v s 
u ((1 + α) R − I) f 2 (v ) dv + 

∫ v s 

v 
u (R − I) f 2 (v ) dv 

}
, (16) 

e = argmax e ′ ≥0 p 
(
e ′ 
){∫ v 

v s 
u ( ( 1 + α) R − I ) f 1 ( v ) dv + 

∫ v s 

v 
u ( R − I ) f 1 ( v ) dv 

}

+ ( 1 − p ( e ′ ) ) 
{∫ v 

v s 
u ( ( 1 + α) R − I ) f 2 ( v ) dv + 

∫ v s 

v 
u ( R − I ) f 2 ( v ) dv 

}
− ke ′ , (17) 

R ≤ v , (18) 

(1 + α) R ≤ v s , (19) 

e ≥ 0 . (20) 

The planner’s objective function (15) is the expected consumer surplus. This function is increasing with the concession-

aire’s effort, decreasing in the concessionaire’s remuneration if unsuccessful, R , and increasing in the threshold v s . The role

played by whether non-aeronautical revenues materialize or not in the planner’s problem (1) –(6) considered in Section 3 is

now played by whether the concessionaire’s effort yields high or low demand for aeronautical services. Constraints (16) and

(17) are the participation and incentive compatibility constraints and (18) and (19) capture the self-financing constraints

under both reward scenarios. 

Now let μi ≡
∫ v̄ 

v v f i (v ) dv , �μ ≡ μ1 − μ2 > 0 ; F i ≡ F i (v s ) ;�F ≡ F 2 − F 1 > 0 ; u h ≡ u ((1 + α) R − I) , u l ≡ u (R − I) , �u ≡ u h −
u l > 0 . We can rewrite the problem as: 

max 
{ R,e } 

p ( e ) ( μ1 − R − αR ( 1 − F 1 ) ) + ( 1 − p ( e ) ) ( μ2 − R − αR ( 1 − F 2 ) ) 

s.t. u ( 0 ) + ke ≤ p ( e ) [ u h ( 1 − F 1 ) + u l F 1 ] + ( 1 − p ( e ) ) ( u h ( 1 − F 2 ) + u l F 2 ) 

e = argmax e ′ ≥0 p 
(
e ′ 
){ u h ( 1 − F 1 ) + u l F 1 } + 

(
1 − p 

(
e ′ 
)){ u h ( 1 − F 2 ) + u l F 2 } − ke ′ , 

R ≤ v , 

( 1 + α) R ≤ v s , 

e ≥ 0 . 
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Next we prove an analogue of Proposition 2 for this setting: 

Proposition 3. Given values of α and v s , assume ρ ≡ min c∈ [0 ,θ I] ρ(c) > 

α
1+ α with ρ(c) as in Definition 1. Then the optimal

contract among those that pay R when v < v s and (1 + α) R when v > v s has positive effort e ∗ > 0 and R = R ∗ determined by

(R ∗) = u (0) with I 
1+ α < R ∗ < I. 

Proof. Consider the planner’s problem without the no-subsidy constraints (we check at the end if the solution satisfies the

constraints). We also assume that the conditions for the application of the first-order approach are satisfied. Therefore, the

planner’s problem can be rewritten as: 

max 
{ R,e } 

μ2 − ( 1 + α) R + p ( e ) [ �μ − ( αR ) �F ] + αRF 2 

s.t. 

u ( 0 ) + ke ≤ u h ( 1 − F 2 ) + u l F 2 + p ( e ) ( �u ) ( �F ) 

k = p ′ ( e ) ( �u ) ( �F ) 

0 ≤ e 

To show the result, note that I/ (1 + α) < R < I. Otherwise, effort would lead to losses always (if R < I/ (1 + α) ) or the

concessionaire would have rents without effort ( R > I ). We ensure that positive effort is optimal when R = I (and therefore

when R < I ) by the condition that k ≤ p ′ (0)( �u )( �F ) (see FOC of the incentive constraint). 

Let e ( R ) be the functional relationship obtained from the incentive compatibility constraint. Implicit differentiation of the

ICC, combined with the properties of p and the assumption that ρ > α/ (1 + α) (which, via an analogous argument to the

one used to derive Lemma 2 , implies that (1 + α) < u ′ 
l 
/u ′ 

h 
), show that e ′ ( R ) < 0. Then we can write the planner’s and the

firm utility as functions solely of R : 

V ( R ) = μ2 − ( 1 + α) R + p ( e ( R ) ) [ R�μ − ( αR ) �F ] + αRF 2 , (21)

U(R ) = u h (R )(1 − F 2 ) + u l (R ) F 2 + p(e (R ))(�u (R ))(�F ) − ke (R ) . (22)

V is decreasing in R if the condition �μ> ( αR ) �F holds; that is, if the planner’s expected benefit from successful effort is

larger than the expected revenue foregone by providing the incentives. There is no reason why the planner should consider

contracts that do not satisfy this condition since the planner only considers consumer surplus in her objective function. 

The utility function of the concessionaire is increasing in R , since 

U 

′ (R ) = (1 + α) u 

′ 
h [1 − pF 1 − (1 − p) F 2 ] + u 

′ 
l [ pF 1 + (1 − p) F 2 ] − ke ′ (R ) > 0 . 

Thus, when R ∈ [ I/ (1 + α) , I] , the utility of the concessionaire falls with reductions in R , while that of the planner rises.

It follows that there exists R ∗ ∈ [ I/ (1 + α) , I] such that U(R ∗) = u (0) and at that value, the objective function is maximized.

Note also that the no-subsidy conditions are satisfied. �

Moreover, since U(I/ (1 + α)) < 0 and U ( I ) > 0, a second price auction with identical bidders and with R as bidding vari-

able implements the optimal contract, since by competition the expected utility of the concessionaire is 0. We have shown:

Corollary 2. The optimal contract is implemented by a competitive auction where firms bid on R, i.e., a Present Value of Revenue

(PVR) auction. 

Thus, this contract provides incentives for firms to exert optimal effort in airports which face an elastic demand. 35 

4. Conclusion 

A major extension of El Loa Airport in northern Chile was tendered as a PPP by the Ministry of Public Works in Jan-

uary, 2011, after the expiration of the first PPP contract. The El Loa airport serves about 1.2 million passengers a year. The

project considered 8.100 m 

2 of new terminal space for shops and other ancillary businesses. Nonetheless, the winning firm

concluded that the optimal increase in commercial space required an additional 2.0 0 0 m 

2 . The concessionaire obtained per-

mission from the ministry to build a larger terminal. According to the concessionaire, the enlargement of the commercial

area played a major role in the high profits reported by the concession during 2014, its first year of operation. 

This example illustrates the motivation for this paper. Under a PPP the provider of airport services has strong incentives

to invest during the construction phase to enhance the value of non-aeronautical services. These incentives are likely to be

weaker, if present at all, under public provision. 

In this paper we have shown that the optimal PPP contract when there are observable ancillary revenues –linear in

demand– has the same form as the efficient contract when there are no ancillary revenues. The contract eliminates all
35 Observe that there is another interpretation for these results. Assume that demand is fixed (as in Section 2 ). Then e could be effort (or investment) in 

non-observable cost reduction. 
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Table A1 

Industry revenue (billion USD). 

Region Total Aeronautical Non-aeronautical % Non-aero. 

Africa 2.8 1.9 0.9 32 

Asia-Pacific 31.6 15.8 15.8 50 

Europe 44.3 26 0.1 18.2 41 

LA + Carib 6.5 4.2 2.3 35 

North America 25.3 14.3 11.0 43 

Total 117.0 65.8 51.2 44 

Notes: 2013 ACI Economics Report, Preview Edition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

exogenous risk for the concessionaire, while retaining a fraction of the endogenous risk which is required for efficient effort

on ancillary revenues. Moreover, this contract can be implemented with a simple bidding procedure, a variant of the PVR

auction proposed by Engel et al. (2001) . We also show that, unless the concessionaire is very risk averse, he shares ancillary

revenues with the Planning Authority . 36 

When the probability of success of effort is higher, the fraction of revenues needed to provide incentives is smaller, so

a smaller fraction of ancillary revenues goes to the concessionaire. The same thing happens if the cost of effort goes down.

Finally, as risk aversion increases, the concessionaire receives a larger share of ancillary revenue. 

In an extension, we examined a simple case where demand for travelers depends on effort s by concessionaires (hubs

or other important airports), but without ancillary revenue. We considered PPP contracts such as those for the airports of

Sao Paulo, Rio de Janeiro and Santiago, which are characterized by additional investment if the airport reaches demand

thresholds. This additional investment is profitable for the concessionaire, as it is associated to direct payments from the

Treasury or to term extensions. We show that the optimal contract can be attained with a PVR auction, which provides

efficient incentives to increase demand, in contrast to fixed term contracts. 

Appendix A. Airport background 

A1. Non-aeronautical revenues in airports 

Airport revenues are usually divided into two classes, aeronautical and non-aeronautical. Aeronautical revenues are those

directly related to the airport business. They include passenger charges, landing charges, terminal rental, security charges,

ground handling, with the remaining covering items such as boarding bridge, cargo, fueling, airplane parking, utility and

environmental and other minor charges. Non-aeronautical revenues are the other important source of income for airports.

In 2012 U.S. airports had total revenues of $ 17,2 Billion and 45.2% came from non-aeronautical services. 37 , 38 According to

the GAO report, since 2004 non-aeronautical revenues have been growing at 4% annually, while aeronautical revenues grew

at the slower rate of 1.5%. 

Table A.3 shows that the share of non-aeronautical revenue varies from a low of 32% in Africa to a high of 50% in

Asia-Pacific. Because these numbers are for airports in toto , which are managed by a Transport Authority, they probably

underestimate the share of non-aeronautical revenues. Indeed, most airport PPPs do not report all aeronautical revenue in

their accounts, because landing fees are usually still assigned to the Authority responsible for air security and navigation.

In Chile’s main airport, for example, non-aeronautical fees represented 62.8% of total revenues of the PPP in 2011 (up from

58.3% in the previous year). Another reason for the importance of non-aeronautical revenues is that, as we have mentioned

before, Graham (2009) shows that non-aeronautical revenues are more profitable for airports, and thus have more influence

in their behavior. 

A2. The relevance of airports with exogenous demand 

Fig. A1 Thi shows that most trip segments in the world are served by one or two airlines, and there is no competition

among these airports. Table A2 shows the airports per city. Table A3 shows the number of pairs of cities served by one or

more airport-airline links. 
36 Even though our model assumes symmetric firms, it can be easily extended to the case with of bidders with heterogeneous costs when the mechanism 

to assign the concession is a second-price auction. The winner will receive rents equal to its cost advantage relative to the second lowest cost, but the 

remaining results are unchanged (see Krishna, 2010 ). 
37 Government Accounting Office, “Airport Funding: Aviation Industry Changes Affect Airport Development Costs and Financing,” Washington DC: Gov- 

ernment Accounting Office, 2014. Similarly, the 2013 ACI-NA Concessions Benchmarking Survey of November 2013 shows that of US$16.87 billion in total 

operational revenues at all airports in 2012, 44.8% was non-aeronautical revenue. 
38 The composition of non-aeronautical revenues is as follows: parking and transportation charges: 40.9%; rental car services: 19.7%; retail and duty free: 

8,3%; food and beverages, 6,9%; terminal services, 5%; other services, 10.4%. 
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Fig. A1. Distribution of the number of airlines flying trip segments worldwide in several years. Source: A. Galetovic, using the Data in, Intelligence Out 

database. 

Table A2 

Number of airports per city. 

# airports per city Number of cities % Total airports 

1 3,434 97.50 3.434 

2 77 2.19 154 

3 8 0.23 24 

4 2 0.06 8 

6 1 0.03 6 

Total 3.522 10 0.0 0 3.626 

Source: Ibid. 

Table A3 

Pairs of cities linked by one or more airline-airport pair. 

City Pairs Airports in city-pairs Airport pairs % 

1,224 1 1,224 77% 

71 2 142 9% 

1 3 3 0% 

2 4 8 1% 

No information 213 213 13% 

Total 1,590 100% 
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