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Abstract

This paper investigates why oligopolistic manufacturers may choose to

sell their products through an independent dealer rather than directly to

�nal consumers. In our model, manufacturers can observe neither the re-

alised demand nor the sales services provided by the dealer and must incur

a monitoring cost to ascertain the sales services provided . Manufacturers

choose a permissible discount, followed by a price-quantity target to be

implemented by the dealer. We show that if the monitoring cost parame-

ter is too high, the �rm might deprive the dealer of any decision power

by behaving like a Bertrand competitor. This is akin to a no-dealership

equilibrium. For su¢ ciently low values of a monitoring cost parameter,

the �rm chooses the degree of �exibility for their dealer, and the equilib-

rium market outcome ranges from Cournot to Bertrand contingent on the

parameter.

JEL Classi�cation: L1, L2, L4.

Key-words: dealer-manufacturer equilibrium; oligopoly; multiple equi-

libria.

1 Introduction

Virtually every good sold in a modern, complex economy goes through several

stages of production and distribution, from acquisition of raw materials and

intermediate goods, to manufacturing of the �nal good, to marketing and sales

to �nal consumers. Each of these stages involves both �rm-level (strategic)

decisions and external factors that in�uence the �nal good outcome in terms
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of prices, quantities, quality, product di¤erentiation and so on. Some of these

activities take place inside the �rm and others in markets. Economics, and

economists, tend to focus on particular stages or interactions at the horizontal

or vertical levels.

For example, there is a large literature, going back to Cournot (1838) and

Bertrand (1883) that examines the strategic interactions of �rms in a particular

(horizontal) market. An important theme in this literature is how the choice

of strategic variable (e.g., price versus quantity) impacts on market outcomes.

More general representations of the strategy space are considered by Robson

(1981), Klemperer and Meyer (1989), and Kao, Menezes and Quiggin (2014).

Similarly, there is a large and in�uential literature in industrial organization

that focuses on how �rms choose to organize their operations. Coase (1937)

introduced the notion of transaction costs as an important factor in what is

often called the make-or-buy choice. This refers to decisions about what should

be done inside the �rm, what should be contracted out and, if contracted, what

should be the nature of contractual arrangements between the �rm and outside

parties.

Coase�s ideas were extended by Williamson (1971) relating transaction costs

to asset speci�city and concerns about hold-up. Concerns about the possibility

of particular assets being stranded lead naturally to a focus on the contracts that

govern the relationship between the di¤erent parties. In this vein, Alchian and

Demsetz (1972) proposed a theory of property rights and much later Hart (1995),

Grossman and Hart (1986) and many others looked at contract incompleteness

as one of the main drivers of the determinants of the nature of �rms.1

This vast literature encompasses a wide range of vertical relationships from

arms-length procurement to franchise contracts (including dealership arrange-

ments) to full vertical integration.2 A central theme is the notion that vertical

integration harmonizes the interests of the di¤erent parties. For example, a

manufacturer that sells directly to consumers avoids any potential con�icting

incentives that an independent retailer may have. By contrast, if the retail

market is competitive, and upstream �rms lack information about the state of

demand, they may �nd it di¢ cult to exploit any market power they may have.

Intermediate forms of organization such as dealerships may permit �rms to gain

some of the bene�ts of market power while separating production activities from

the retail services required by �nal consumers.

1Demsetz (1988) himself made such a connection.
2For a comprehensive survey of the empirical literature on vertical integration and �rms�

boundaries, see Lafontaine and Slade (2007).
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Our interest lies in the interface between the two central themes outlined

above. Broadly speaking, we seek to better understand the relationship between

the nature of competition in a �nal goods market and the �rms� choices of

vertical strategies.3 More speci�cally, we focus on why �rms with market power

in a �nal goods market may choose specialist dealers, involving a franchise to

sell speci�ed items in a certain area, rather than exploiting their market power

directly.

By and large, the literature on dealership contracts focuses on the case of

a monopoly manufacturer. In this instance, a dealership contract, with resale

price maintenance or exclusive territory clauses, eliminates double marginaliza-

tion and the free rider problem that arises when sales require expenditure on

promotional activities.4 Instead, as in Bonanno and Vickers (1988), we focus

on the case of oligopolistic manufacturers.

Whereas in Bonanno and Vickers (1988) manufacturers choose wholesale

prices and retailers choose retail prices, in our model manufacturers make more

complex choices. We develop a manufacturer/dealer model with second-stage

oligopolistic competition in supply schedules with stochastic demand. Similar

to Blair and Lewis (1994), the manufacturer does not know whether to attribute

low sales to low demand or to the dealer skimping on services. Whereas Blair

and Lewis investigate the properties of an optimal contract, we focus on costly

monitoring by the manufacturer.

We assume that manufacturers give instructions to dealers who undertake

the sales, upon observing the true state of demand. The dealer is paid a per unit

service cost. Absent service, the good is worth less to the consumers, and thus

the realized demand is lower for the �rm. The manufacturer cannot distinguish

between the lack of service and lower demand state without costly monitoring.

We model the dealership�manufacturer relationship by referring to a number

of features that are present in existing dealership arrangements governing auto-

mobile distribution as documented by Arrunada, Garicano and Vasquez (2001).

The reported contractual features include the manufacturer�s right to determine

(and monitor) sales targets and to set maximum authorized prices.

In our framework, manufacturers are assumed to set incentives that de�ne

a space of marketing strategies. These incentives determine the intensity of

competition, represented by a willingness to discount their preferred price in

order to achieve a target sales quantity. The polar cases are Bertrand strategies

3This is similar in spirit to the literature that seeks to understand how the nature of
competition also seems to a¤ect the internal organization (governance and delegation of tasks)
inside the organisation. See the recent summary by Aghion, Bloom and Reenen (2013)

4See, for example, Telser (1960), Mattewson and Winter (1985) and Rey and Tirole (1986).
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in which �rms �x a price, and sell the quantity demanded at that price, and

Cournot strategies in which �rms �x a quantity and sell it at the market-clearing

price. Between these two polar extremes are a range of possible marketing

strategies, speci�ed by a �willingness to discount�parameter, �, ranging from

zero (Cournot) to in�nity (Bertrand).

In the case of a Bertrand strategy, the manufacturers�instructions are self-

enforcing. The dealer is given a speci�ed price. With price competition, absent

service, the dealer is e¤ectively selling the product at a higher price than the

competitors, which leads to zero sales. Therefore the gain to the dealer from

shirking service e¤ort is zero. In this case, there is no need for costly monitoring

of service provision. This strategy can also be thought of as a �no-dealership�

strategy; the dealer does not play an active role in the second-stage of the game.

In the Cournot case, by contrast, the dealer is given a sales target and

instructed to sell at whatever the market clearing price. By shirking service

e¤ort and disguising the lower sales as a result of a lower realized demand state,

the gain to the dealer is the saving on service cost. Hence, the �rm must engage

in costly monitoring to ensure that the dealer is providing adequate service as

contracted and, thus, truthfully reporting the state of demand.

We show that if the monitoring cost parameter is to high, the �rm might

deprive the dealer of any decision power by behaving like a Bertrand competitor.

For su¢ ciently low monitoring cost parameters, the �rm chooses the degree of

�exibility for its dealer. The equilibrium market outcome is indexed by the

monitoring cost.

2 The Model

We model a two-stage, n �rm oligopoly game where each �rm is characterized

by a pair comprising a manufacturer and a dealer. The inverse market demand

is given by:

P (Q; "; s) = F (Q; ") +G(s);

where F is a continuous, concave function in its �rst argument, G a continuous,

concave function of the service level s and " 2 R a stochastic shock with E ["] = 0
and V ar ["] = �2".

As the optimal level of service is a per-unit �xed amount, and since, as we

will show that in equilibrium, the dealer will provide such an optimal amount,

it is convenient to write the (direct) market demand as D (P; ") with DP < 0,

DPP � 0.
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In the �rst stage, each manufacturer i �rst chooses a �permissible discount�

rate (�i) which speci�es the degree of �exibility of the sales contract. As ex-

plained further below, this discount �i is represented by the slope of the supply

function chosen by the manufacturer and captures the intensity of competition.

Then, given the choices �i; i = 1; :::; n; each manufacturer chooses a price�

quantity target pair
� ePi (") ; eqi (")�. The manufacturers can be thought of as

choosing a pair (Pi; qi) for each possible realization of ": The stochastic shock

" is revealed at the second stage, and is observable only by the retailer. The

contract requires the retailer to implement (Pi; qi) according to the instructions

of the manufacturer. However, since " is unobservable to the manufacturer, the

manufacturer can only audit the service provision through costly monitoring.

Manufacturer i can observe the quantity sold by its dealer, qi, and by exam-

ining the invoices, the sales price P . The dealer is contracted to perform some

service for each unit of sale and receives a �xed per unit amount. Since the de-

mand state is unobservable to the manufacturer, the dealer can under-provide

service and report lower ". The gain to the dealer from service under-provision

is the saving on per unit service cost.

To mitigate the ability and the incentives of its dealer to under-provide

service and mis-report the demand state, manufacturer i incurs a monitoring

cost Mi(�). The amount of monitoring cost required to facilitate the truthful
reporting from the dealer depends on the latitude given to the dealer in terms of

the permissible discount. As � increases, competition in the market intensi�es.

Without the service component provided, the dealer sells a smaller quantity, and

thus there is less gain associated with shirking service. That is, the monitoring

cost decreases in �.5

We will show that such a price�quantity target, together with the permissible

discount variable �, gives rise to competition in linear supply functions. The

slope of the supply curve is chosen in the �rst stage. In the second stage, the

dealers play an oligopoly game in which the strategy space consists of the set of

linear supply schedules with the given slope.

With competition in supply functions, given the strategies of other �rms,

the �rm maximizes pro�t by choosing one point on its residual demand curve.

Choosing quantity and choosing price give the same outcome. The observation

of a Delta airlines executive, cited by Klemperer and Meyer (1989, footnote 5),

that:

�We don�t have to know if a balloon race in Albuquerque or a rodeo

5We present the monitoring game in the appendix.
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in Lubbock is causing an increase in demand for a �ight�

is apposite here. This observation remains true if the increased demand for

Delta services is caused by a reduction in the number of �ights o¤ered by, say,

Southwest.

Note, however, that the timing of the game di¤ers from that of Klemperer

and Meyer (1989), where �rms must specify a supply schedule before learning

the value of ", and where it is assumed that the range of values of " is su¢ cient

to determine a complete supply schedule. In our case, the pair
� ePi (") ; eqi (")�

depends on the reported state of demand.6 Since �rms are not price-takers,

their desired price and quantity will, in general, increase with demand. The

resulting locus of equilibrium prices and quantities has many of the properties

of a supply curve, but must be interpreted di¤erently. This point is developed

further below.

In this setting, the strategy space for manufacturer i consists of vectors�
�i; ePi (") ; eqi (")� where � ePi (") ; eqi (")� is the �target�price�quantity pair, and
�i is the willingness to discount. The vector

�
�i; ePi (") ; eqi (")� represents the

instructions given by the �rm, as the manufacturer, to its dealer.

Assuming constant marginal cost of production, the manufacturer�s total

costs are given by:

TCi (�i; qi) =Mi (�i) + cqi + �qi;

with �i � 0, qi > 0, M
0

i < 0, M
00

i � 0, c � 0 the marginal cost of production,
and � � 0 the per unit sales service payment to the dealer.
Hence, for a given price�quantity pair (P; qi), pro�t for manufacturer i, con-

ditional on the choice of �i and the demand shock "; is given by:

�i (qi;�i; ") = Pqi � TCi (�i; qi) :

We demonstrate that truth telling of the demand state by the dealer can be

achieved with costly monitoring in Appendix A. Furthermore, the monitoring

cost decreases in �. For � = 0, the �rm wants the retailer to sell exactly the

target output. This corresponds to Cournot competition with a �xed output,

independent of the market price. When � !1, for any P � ePi ("), the �rm is

6The manufacturer speci�es
� ePi (") ; eqi (")� contingent on the true demand state. However,

the true demand state is not observable to the manufacurer. The realised
� ePi (") ; eqi (")�

depend on the reported demand state from the dealer. We show in the appendix that in
equilibrium, the dealer reports the true demand state with su¢ cient costly monitoring.
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willing to supply any quantity. This corresponds to Bertrand type behavior. In

the Bertrand case, the dealers have no opportunity for cheating, since under-

provision of service would lead to zero sales. The dealer in this case is best

thought of as an employee of the manufacturer.

Given the instructions set by the manufacturers in the �rst stage, and follow-

ing the realization of the demand shock "; the dealers implement the strategies

in the second period. In equilibrium, with all dealers truthfully reporting the de-

mand state and provide the contracted service, a common price, P (") = ePi ("),
8i, emerges and �rms sell their selected output eqi (") ; and the market clears
with D (P (") ; ") =

P
i eqi (").

3 The main result

We solve the game backwards to obtain the subgame perfect Nash equilibrium.

That is, we �rst derive the market equilibrium (P (";�) ;q (";�)) where " is

the observed shock, � = (�1; :::; �n) is the vector of �rst round strategy choices

and q = (q1; :::; qn) is the vector of equilibrium output quantities. We derive

�rst-order conditions for the general case, and then a closed-form solution for

the case where �rms with zero marginal production cost compete in an industry

with linear inverse demand curve, subject to an additive demand shock:

3.1 The choice of price and output target

In the product market competition stage, the dealer chooses the output and

price given the instructions from the manufacturer. We show in the appendix

that with costly monitoring, the dealer implements the output and price choice

contingent on the true demand state as speci�ed by the manufacture. We an-

alyze the manufacturer�s choice of the output and price target in this section

given the �rst stage �.

Recall that manufacturer i�s instructions consist of a triple
�
�i; ePi (") ; eqi (")�

where
� ePi (") ; eqi (")� represents the desired price�quantity pair for demand

state ", and �i 2 [0;1] represents the willingness of �rm i to discount the

preferred price ePi (") in order to achieve the desired quantity eqi ("). That is, for
given ", the �rm instructs the retailer to o¤er a locus of price�quantity pairs

(P; q) passing through
� ePi (") ; eqi (")�, such that when evaluated at � ePi (") ; eqi (")�,

@ ePi (")
@eqi (") = 1

�i
. (1)
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Without loss of generality,7 we can con�ne attention to the linear locus given

by the equation

�i

�
P̂ � ePi (")� = (qi � eqi (")) ; �i 2 [0;1]

or

qi

�
P̂ ; �; "

�
= eqi (") + �i �P̂ � ePi (")� ; �i 2 [0;1] (2)

where qi
�
P̂ ;�; "

�
is the quantity sold by the dealer and P̂ is the market clearing

price with D
�
P̂ ; "

�
=
Pn

i=1 qi

�
P̂ ;�i; "

�
. The case �i = 0 8i gives a family of

vertical supply schedules. This corresponds to Cournot competition with a �xed

output.

The other polar case when � =1 yields horizontal supply schedules. More

precisely:

qi

� ePi; P̂ ; �; "� =
8>><>>:

D
� ePi; "�

[0; D
� ePi; "�]
0

P̂ > ePi (") ;
P̂ = ePi (") ;
P̂ < ePi (") ;

That is, the �rm will supply the entire market at prices above the targetePi ("), zero at prices below ePi (") ; and any output in the range [0; D � ePi; "�]
when P̂ = ePi (") : This corresponds to Bertrand type behavior. The choice of
� = 1 permits any deviation from the target output and therefore does not

incur any monitoring cost.

For known " and �j , and given choices of
� ePj (") ; eqj (")�,8j 6= i, each �rm

takes its residual demand curve as given, and acts as a pro�t-maximizing mo-

nopolist.8

Market clearing gives

D
�
P̂ ; "

�
=

NX
j=1

qj

�
P̂ ;�i; "

�
= qi

�
P̂ ;�i; "

�
+Q�i

�
P̂ ;�; "

�
where

Q�i

�
P̂ ;�; "

�
=
X
j 6=i

qj

�
P̂ ;��i; "

�
:

7As shown by Kao, Menezes and Quiggin (2014), if
� eP (") ; eqi (")�, i = 1; :::; n, is an

equilibrium loci of the form (2), conditional on demand D (P; "), it is an equilibrium for any
game in which, for all i; the strategy space is given by loci q̂i (P; �; ") satisfying (1) for each� ePi (") ; eqi (")�. All such strategies may be summarized by the pair (�i; eqi (")) such that (2)
holds in a neighborhood of ePi.

8Choosing
� ePi (") ; eqi (")�, combined with the constraint P̂ = ePi (") in equilibrium, gives

us the same solution as choosing the supply schedule qi
�
P̂ ;�; "

�
.
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The residual demand facing �rm i; represented by its dealer, in the second

stage is

Di

�
P̂ ; "

�
= D

�
P̂ ; "

�
�Q�i

�
P̂ ;�; "

�
:

Firm i solves

max
qi

�i (qi;�i; ") = Di

�
P̂ ; "

��
P̂ � c� �

�
�Mi (�i) :

The FOC gives

�
P̂ � c� �

��
D0
�
P̂ ; "

�
�Q0�i

�
P̂ ;�; "

�� @P̂
@qi

+Di

�
P̂ ; "

� @P̂
@qi

� 0:

with equality for interior solutions.

In an interior solution, the optimal q�i in the second stage is de�ned by�
P̂ � c� �

��
D0
�
P̂ ; "

�
�Q0�i

�
P̂ ;�; "

��
+Di

�
P̂ ; "

�
= 0: (3)

Note that this is just the familiar inverse elasticity pricing rule with the

residual demand facing �rm i adjusted by the supply function. At P̂ , the residual

demand elasticity, �, is

� =

@qi
q�i

@P̂
P̂

=
@qi

@P̂

P̂

q�i
=
�
D0
�
P̂ ; "

�
�Q0�i

�
P̂ ;�; "

�� P̂
q�i
:

Simple re-arrangement of Equation 3 gives

P̂ � c� �
P̂

= � q�i�
D0
�
P̂
�
�Q0�i

�
P̂ ;�; "

��
P̂
= �1

�
: (4)

Remark 1 Firms�second stage quantity choices are strategic substitutes.

3.2 First-stage equilibrium

We now consider the determination of � in the �rst stage of the game.

In the �rst stage, �rm i chooses �i to maximize

max
�i

E
h
q�i (�i) P̂

�
q�i (�i) ; Q

�
�i
�
� TCi (�i; q�i )

i
:

The FOC yields:

E

"
@q�i (�i)

@�i

�
P̂
�
q�i (�i) ; q

�
�i
�
� c� �

�
+ q�i

@P̂
�
q�i (�i) ; Q

�
�i
�

@�i
� @Mi (�i)

@�i

# <

=

>

0;

(5)
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with < for ��i = 0, = for �
�
i 2 (0;1), and > for ��i =1.

We have

Proposition 1 �i = 1;8i is a �rst-stage equilibrium, with the corresponding
second-stage solution P̂ (") = c+ �, Q (") � D (c+ �; ").

Proof. Given �j =1, 8j 6= i, from Equation 4, we have P̂ = c+ � and hence
@P̂
@�i

= 0. With @Mi(�i)
@�i

< 0, ��i =1.
Proposition 1 establishes that there is always an equilibrium where the dealer

plays no active role in the product market. In essence, we have shown that there

is always a no-dealership equilibrium under imperfect competition. This result

o¤ers, for example, some insights into the changing role of car dealerships upon

the introduction of strong competition from imports and from the increase in

the intensity of competition that has been brought about by the internet. For

example, recent analysis suggests that

�the average number of showroom visits a customer makes before

a new car purchase is on an average 1.4 � down from four visits.

Customers walk into a dealership with their homework done. They

will have browsed websites, read reviews, visited social networks and

community forums � and at that point, the role of the dealer will

no longer be that of an information source, but that of a product

experience provider.�9

Proposition 1 raises the question of whether it is possible to have an equilib-

rium where dealers play a more active role under imperfect competition. Below

we answer this question in the a¢ rmative and in the next subsection we provide

su¢ cient conditions for such an equilibrium to exist.

Proposition 2 For some range of marginal monitoring cost, there exists a pos-
itive pro�t symmetric equilibrium.

Proof. As @TCi(�i;qi)
@qi

= c+ �;8i, in an interior solution, the FOC in Equation
5 gives

E

"
@q�i (�i)

@�i

�
P̂
�
q�i (�i) ; q

�
�i
�
� c� �

�
+ q�i

@P̂
�
q�i (�i) ; q

�
�i
�

@�i

#
= E

�
@Mi (�i)

@�i

�
:

(6)

As shown in the proof of Proposition 1, the LHS is equal to 0 when � =1.
9See http://www.forbes.com/sites/sarwantsingh/2014/02/05/the-future-of-car-retailing/
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At � = 0, the LHS becomes

E

264 �2D0
�
P̂
�
(n� 1)

�
P̂ � c� �

�2
(1 + n)D0

�
P̂
�
+ nD00

�
P̂
��

P̂ � c� �
�
375 < 0:

Given that the LHS is continuous in �, for E
h
@Mi(�i)
@�i

i
2
�
E

�
�2D0(P̂)(n�1)(P̂�c��)

2

((1+n)D0(P̂)+nD00(P̂)(P̂�c��))

�
; 0

�
,

there exists a symmetric positive pro�t equilibrium such that �� 2 (0;1), and
the FOC at �� is satis�ed for all �rm i.

3.3 Dealership equilibrium with linear demand and addi-
tive shocks

The aim of this subsection is to uncover some conditions that are associated

with the emergence of dealership equilibria �equilibria where dealers play an

active role in setting prices to adjust to demand conditions. To this end, we

will focus on the simple case where n �rms compete in an industry with a linear

inverse demand curve subject to an additive demand shock while both c and �

are normalized to zero. Let the inverse demand be

P = 1� b
nX
i=1

qi + ": (7)

We show in the appendix that the monitoring cost is decreasing in � and is

equal to 0 when � =1. For this example, we assume that the monitoring cost
is given by Mi =

�
�i
, where � is a common parameter for all �rms. With these

simpli�cations, we can derive the closed form solution to the second-stage game

and characterize the �rst-stage choices of � as follows:

Proposition 3 For 0 < � <
2(�2"+1)
b2n3(n�1) , there exists, in addition to the Bertrand

equilibrium, a unique symmetric equilibrium � = � (�) 2 (0;1), with second-
stage equilibrium

q�i =
(1 + ")

�
1
b + (n� 1)�

�
n+ 1 + b (n� 1)n� ;Q =

n (1 + ")
�
1
b + (n� 1)�

�
n+ 1 + b (n� 1)n� ; P =

(1 + ")

n+ 1 + b (n� 1)n� :

In equilibrium,

�� =

�
1 + �2"

� �
1
b + (n� 1)�

�
(n+ 1 + b (n� 1)n�)2

� �

�
:

Given the FOC (Equation 12)on � and the implied relationship between � and

�, �� > 0. Further, this equilibrium is stable.

11



The proof of Proposition (3) is in the appendix. The following corollary sum-

marizes the su¢ cient conditions for the existence of a positive-pro�t, dealership

equilibrium.

Corollary 1 For linear demand, and monitoring costs given by Mi =
�
�i
; a

positive-pro�t equilibrium where dealers play an active role in setting prices is

more likely whenever the number of competitors is small, the variance of demand

is high, and the the demand function is steeper.

The potential multiplicity of equilibria introduces the familiar question about

equilibrium selection. While in general we do not know which equilibrium is

stable, Proposition (3) establishes that the positive pro�t equilibrium is stable.

For the special case of linear demand and Mi =
�
�i
; we can show that the

Bertrand equilibrium is not stable. To see this, we may observe that �rms�

�rst-stage � choices are strategic complements when all �rms�choices of � are

close to each other. For any given j 6= i:

@2E�i
@�i@�j

= �
2
�
1 + �2"

�
b (n� 1)�

1 + n+ b (n� 1)
PN

i=1 �i

�3+6
�
1 + �2"

�
b
�
1 + b

PN
j 6=i �j

�
(n� 1)2�

1 + n+ b (n� 1)
PN

i=1 �i

�4 ;

(8)

with @2E�i
@�i@�j

> 0 for close enough �i and �j and n > 1. This implies that in

this case, the Bertrand equilibrium is unstable. To see that this is not generally

true, note that if the monitoring cost includes a �xed component that is not

incurred for the case when � !1; then the Bertrand equilibrium is stable.

The polar cases of the second-stage solution span the range of (weakly pos-

itively sloped) supply-schedule equilibria. When � =1, P = �i = 0, qi = 1+"
bn

, Q = 1+"
b : This is the Bertrand solution. For � = 0, P = 1+"

n+1 , qi =
1+"

b(n+1) ,

Q = n(1+")
b(n+1) and the gross pro�t �i +

�
� =

1+�2"
b(n+1)2

: This is the Cournot solution.

To show that these polar cases arise as equilibria for the full game, we require

Proposition 4 As � ! 2(�2"+1)
b2n3(n�1) from below, � ! 1, and the equilibrium

outcome converges to the Bertrand solution. As � ! 0, � ! 0 and the equilib-

rium outcome converges to the Cournot solution. More generally, For 0 < � <
2(�2"+1)
b2n3(n�1) , as � increases, the interior symmetric equilibrium � increases.

In general, in oligopoly problems, consumer surplus and producer surplus

move in opposite directions. However, welfare analysis in this model is com-

plicated by the cost �
� incurred by �rms in the �rst stage. Expected consumer
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surplus in a interior symmetric equilibrium is

ECS = E

�
1

2
(1 + "� P )Q

�
=
b
�
1 + �2"

�
2

 
n
�
1
b + (n� 1)�

�
n+ 1 + b (n� 1)n�

!2
:

The expected total surplus is de�ned to be the sum of �rms�expected pro�ts

and expected consumer surplus. Thus

ETS = n

 �
1 + �2"

� �
1
b + (n� 1)�

�
(n+ 1 + b (n� 1)n�)2

� �

�

!
+
b
�
1 + �2"

�
2

 
n
�
1
b + (n� 1)�

�
n+ 1 + b (n� 1)n�

!2
:

We now present some numerical examples.

Example 1 For b = 1, n = 2, � = 0:03, �2" = 0:01 the symmetric equilibrium
gives � � 0:952; Eq � 0:398, EP � 0:20; E� � 5:047�10�2, and ETS � 0:421.
For b = 1, n = 2, � = 0:1 and , �2" = 0:01, the symmetric equilibrium gives

� � 3:050 , Eq � 0:445, EP � 0:11, E� � 1:661� 10�2, and ETS = 0:433.

We further explore the relationships between the optimal symmetric �, the

�rm�s pro�t, the market price, the the total surplus and � in the diagram below.

The diagram below is plotted with �2" = 0:01.
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Figure 1: Symmetric Equilibrium �, �, EP , ETS. Plotted with b = 1, n = 2,

�2" = 0:01.
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4 Conclusion
Little is known about the interaction between the nature of competition in

output markets and the di¤erent vertical arrangements that prevail in a modern

economy, varying from arms-length transactions to contractual arrangements

such as dealerships to full vertical integration. This paper is a �rst attempt

at examining whether dealership arrangements can emerge in equilibrium when

manufacturers compete in the output market.

Generally, we show that there is always an equilibrium where dealers play

no active role in setting prices in the output market. We refer to this as the

non-dealership equilibrium. This equilibrium is characterized by intense com-

petition, approaching the limiting case of Bertrand. We also show that under

some circumstances, such as a small number of competitors, or inelastic or more

volatile demand, another equilibrium exists where dealers are active at price set-

ting. Our results seem to �t with existing trends in dealership arrangements

for car companies, where dealers become providers of product experience rather

than sales services.

5 Appendix A: The Monitoring Game

We uses a linear demand example to illustrate the monitoring game between the

manufacturer and its dealer.10 We show that with a properly speci�ed penalty

payment, the dealer truthfully reports the demand state and carries out the

speci�ed price and output target
� ePi (") ; eqi (")�. The dealer in our model is

paid a per unit service payment �. Due to demand uncertainty, the dealer

can potentially choose not to provide service and attribute low demand to lower

realization of the random shock. We view the goods being sold as a product with

the service component included, D (P; s; "), where D1 < 0, D11 � 0, D2 > 0,

s is the service provided by the retailer, and " 2 R a stochastic shock with

E ["] = 0 and V ar ["] = �2".

Consumers�valuation for the product, net of the service component is

P �G (s) :
10The example presented is a two �rm analysis. However, we analyse the potential deviation

of one dealer while all other dealers are playing the equilibrium strategies. The price charged
by the other dealer can be interpreted as the price charged by all other dealers, and the
quanitity sold by other dealers can be interpreted as the aggregate quantity of all of all other
dealers. The example can be extended and results apply to n �rm analysis.

14



where G (s) is the value added from the service component with G0 (s) > 0 and

G00 (s) < 0. With two �rms, in equilibrium, we have

P1 �G1 (s1) = P2 �G2 (s2) :

Let s� denote the optimal service level per unit of sale from the manufacturer�s

point of view and e� the resulting premium with optimal service level, G (s�) =

e�. The cost to the dealer for performing s� amount of service is �. The dealer

gets zero pro�t by exerting the contracted service for each unit of output sold.

Given that dealer 2 is o¤ering (q2; s�), the demand facing dealer 1 is determined:

P1 �G1 (s1) = P2 � e� = 1 + "� q1 � q2 � e�:

Thus, if the dealer under-provides service with s1 < s�, the sticker price is

reduced, P1 < P2.

5.1 Truth Telling equilibrium

If dealer 1 exerts e¤ort s1 = s� with G1 (s�1) = e�, we have the market clearing

condition with

P1 = P2 = 1 + "� q1 � q2:

Both �rms produce with marginal costs c + �. Firms compete in supply

schedules with @qi
@P = �i. Given (q2; �2)

P = 1 + "� q1 (P; �1)� q2 (P; �2) :

The FOC for qi determination satis�es

(�1� �2)
�1� �1 � �2

(1 + "� q1 � q2 � c� �) +
q�1

�1� �1 � �2
= 0:

The equilibrium quantities are

q1 =
(1 + "� c� �) (1 + �2)

�1 + �2 + 3
and q2 =

(1 + "� c� �) (1 + �1)
�1 + �2 + 3

:

In this truth telling equilibrium, the dealer incurs a � per unit cost for service

and provides service s�. The dealer is compensated for exactly � per unit sold

and earns zero pro�t.

5.2 Deviation

Now consider a possible deviation. Given �rm/dealer 2�s strategy (q2; s�), if

dealer 1 chooses to deviate and provide s1 = 0,

P1 = P2 � e� = 1 + "� q1 � q2 � e�:

15



Firm 1 charges a lower sticker price than �rm 2 to re�ect lower willingness to

pay from the consumer for the product net of the service component. Given q2,

we have

P1 = 1 + "� q1 �
(1 + "� c� �) (1 + �1)

�1 + �2 + 3
� e�:

To report a "0 consistent with (q1; s�), the dealer reports

"0 = "� e�:

Given this, the resulting instruction from the manufacturer would specify

q1 ("
0) =

(1 + "� e� � c� �) (1 + �2)
�1 + �2 + 3

:

The gain to the dealer is the the per unit gain of service cost,

S =
(1 + "� e� � c� �) (1 + �2)

�1 + �2 + 3
�: (9)

S is decreasing in �1 and ! 0 as �1 !1.

Lemma 1 Suppose that the manufacturer monitors the service report with prob-
ability  > S

� ; where � is a �xed penalty if misreporting is observed, and that

monitoring costs are a¢ ne in  and the monitoring costs Mi are proportional

to S:

Mi = mi + Si;

where mi is the �xed cost for monitoring. Then the dealer reports the true state

of demand.

Proof. By inspection of (9).
Observe in particular that, if mi = 0, in the case of the Bertrand strategy

space �i !1; we have Mi ! 0.

6 Appendix B

Proof of Proposition (3). Assuming zero production costs, the �rst-order

condition 3 becomes 0@1
b
+
X
j 6=i

�j

1A (1� bQ+ ")� qi = 0 (10)
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yielding the best response

qi =

�
1
b +

P
j 6=i �j

�
(1� bQ�i + ")�

2 + b
P

j 6=i �j

� :

From FOC (10), we have

qi =

0@1
b
+

NX
j 6=i

�j

1A (1 + "� bQ) :
Summing up the n, n = 1; :::; n, FOCs we have

Q =

 
n

b
+ (n� 1)

NX
i=1

�i

!
(1� bQ+ ") :

This gives

Q =
(1 + ")

�
n
b + (n� 1)

PN
i=1 �i

�
�
1 + n+ b (n� 1)

PN
i=1 �i

� ;

P =
(1 + ")

n+ 1 + b (n� 1)
PN

i=1 �i
; and q�i =

(1 + ")
�
1
b +

PN
j 6=i �j

�
1 + n+ b (n� 1)

PN
i=1 �i

:

Remark 2 In a symmetric equilibrium, we have �1 = �2 = ::: = �n = � and

q�i =
(1 + ")

�
1
b + (n� 1)�

�
1 + n+ b (n� 1)n� ;

Q =
(1 + ")n

�
1
b + (n� 1)�

�
1 + n+ b (n� 1)n� , and P =

(1 + ")

1 + n+ b (n� 1)n� :

We now consider the choice of �i in the �rst stage. Given the second stage

outcome, �rm i solves

max
�i

E
�
�i
�
�i;��i; "

��
=

0@ (1 + ")
�
1
b +

PN
j 6=i �j

�
1 + n+ b (n� 1)

PN
i=1 �i

1A (1 + ")

n+ 1 + b (n� 1)
PN

i=1 �i

!
� �

�i
:

The FOC gives

@E
�
�i
�
�i;��i; "

��
@�i

= �
2
�
1 + �2"

� �
1 + b

PN
j 6=i �j

�
(n� 1)�

1 + n+ b (n� 1)
PN

i=1 �i

�3 +
�

�2i
� 0 (11)
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with equality for an interior solution.

In a symmetric interior solution

� =
2
�
1 + �2"

�
(1 + b (n� 1)�) (n� 1)�2

(1 + n+ b (n� 1)n�)3
: (12)

The RHS is equal to 0 if � = 0 and is equal to
2(�2"+1)
b2n3(n�1) if � =1. Further-

more, the RHS increases in � for n � 1. Given this monotonicity, for each given
� 2

�
0;

2(�2"+1)
b2n3(n�1)

�
, there is a unique symmetric � solution.

Remark 3 The second order condition is always satis�ed for symmetric equi-
libria with �nite positive �.

Substitute the � value for an interior � solution from Equation 11,

@2E�i
�
�i
�
�i;�

�
�i
��

@�2i
= 2

�
1 + �2"

�
(n� 1)

0@1 + b NX
j 6=i

�j

1A
0B@b (n� 1)�i � 2 (1 + n)� 2b (n� 1)PN

j 6=i �i

�i

�
1 + n+ b (n� 1)

PN
i=1 �i

�4
1CA :

(13)
@2E�i[�i(�i;��i;")]

@�2i
< 0 for close enough �i and ��i.

Proof. (continued) Proof of Stability
This proof follows Dixit (1986), Martin (2002), and Seade (1980), adapted

to our setup. Let
�
��i ;�

�
�i
�
be an equilibrium of the �rst stage game. Suppose

that if �rms choose
�
�i;�

�
�i
�
in the neighborhood of

�
��i ;�

�
�i
�
, �rm i changes

�i over time at a rate proportional to its marginal pro�tability,

d�i
dt

= ki
@E�i

�
�i;�

�
�i
�

@�i
; (14)

for ki > 0. That is, if it is pro�table to increase �i, �rm i increases �i at a

rate which is proportional to marginal pro�tability.

Take a local linear approximation to Equation 14 around
�
��i ; �

�
�i
�
:

d�i
dt

= ki
@E�i

�
��i ;�

�
�i
�

@�i
+ki

24@2E�i ���i ;���i�
@�2i

(�i � ��i ) +
X
j 6=i

@2E�i
�
��i ;�

�
�i
�

@�i@�j

�
��i � ��j

�35 :
At an interior

�
��i ;�

�
�i
�
,
@E�i(�i;���i)

@�i
= 0. Repeat the analysis for each �rm
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j, j 6= i, the system of adjustment equations can be written as0BBBBBBBB@

d�1
dt
d�2
dt

:

:

:
d�n
dt

1CCCCCCCCA
=

0BBBBBB@
k1 0:::0 0

0

k2

:

:

0

0 0:::0 kn

1CCCCCCA
0BBBBBBBBBB@

@2E�1(��i ;�
�
�i)

@�21

@2E�1(��i ;�
�
�i)

@�1@�2
:::

@2E�1(��i ;�
�
�i)

@�1@�n
@2E�2(��i ;�

�
�i)

@�2@�1

:

:

:

@2E�2(��i ;�
�
�i)

@�22
:::

:

:

:

@2E�2(��i ;�
�
�i)

@�2@�n

:

:

:
@2E�n(��i ;�

�
�i)

@�n@�1

@2E�n(��i ;�
�
�i)

@�n@�2
:::

@2E�n(��i ;�
�
�i)

@�2n

1CCCCCCCCCCA

0BBBBBBBB@

�1 � ��1
�2 � ��2

:

:

:

�n � ��n

1CCCCCCCCA
:

Note that the matrix on the LHS is a n�1 matrix. The matrices on the RHS
are n�n, n�n, and n�1 respectively. Stability requires the Jacobian matrix to
have a negative trace and that the determinant of the Jacobian matrix should

have the same sign as (�1)n. Given that the second order condition is satis�ed
in equilibrium, the Jacobian matrix has a negative trace. The determinant of

the matrix can be computed as (see Dixit, 1986, and Seade, 1980):

nY
i=1;j 6=1

 
@2E�i

�
��i ;�

�
�i
�

@�2i
�
@2E�i

�
��i ;�

�
�i
�

@�i@�j

!0B@1 + nX
i=1;j 6=i

@2E�i(��i ;�
�
�i)

@�i@�j

@2E�i(��i ;���i)
@�2i

� @2E�i(��i ;���i)
@�i@�j

1CA :

The second condition we require is thus

(�1)n

264 nY
i=1;j 6=1

 
@2E�i

�
��i ;�

�
�i
�

@�2i
�
@2E�i

�
��i ;�

�
�i
�

@�i@�j

!0B@1 + nX
i=1;j 6=i

@2E�i(��i ;�
�
�i)

@�i@�j

@2E�i(��i ;���i)
@�2i

� @2E�i(��i ;���i)
@�i@�j

1CA
375 > 0:

(15)

The simplest set of su¢ cient conditions is obtained by requiring diagonal dom-

inance in the matrix:�����@2E�i
�
��i ;�

�
�i
�

@�2i

����� > (n� 1)
�����@2E�i

�
��i ;�

�
�i
�

@�i@�j

����� : (16)

With symmetry, Equations 13 and 8 become

@2E�i
�
��i ;�

�
�i
�

@�2i
= 2

�
1 + �2"

�
(n� 1) (1 + b (n� 1)�)

 
b (n� 1)� � 2 (1 + n)� 2b (n� 1)2 �

� (1 + n+ b (n� 1)n�)4

!
:
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@2E�i
�
��i ;�

�
�i
�

@�i@�j
= �

2
�
1 + �2"

�
b (n� 1)

(1 + n+ b (n� 1)n�)3
+
6
�
1 + �2"

�
b (1 + b (n� 1)�) (n� 1)2

(1 + n+ b (n� 1)n�)4
:

Condition 16 is satis�ed for n > 1.
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