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ON HOUSING MARKETS WITH INDECISIVE AGENTS

EMILIO GUAMÁN AND JUAN PABLO TORRES-MARTÍNEZ

Abstract. We study the non-monetary exchange of indivisible goods when agents may be unable to

compare some of them. Adding incomplete preferences to the Shapley-Scarf housing market model,

we introduce two concepts of coalitional stability: the core and the strong core. The core is the set

of allocations immune to blocking coalitions that improve the well-being of house-switching members,

while the strong core is the set of allocations immune to blocking coalitions that may leave some

members with a house incomparable with the original. In the domain of incomplete, transitive,

and strict preferences, we characterize a family of group strategy-proof mechanisms that always

select allocations in the core. Moreover, in the subdomain in which incomplete preferences induce

transitive incomparability relations, we show that there are efficient, individually rational, and weakly

group strategy-proof mechanisms that select allocations in the strong core when it is non-empty. We

also extend these results to housing allocation problems in which existing tenants and newcomers coexist.

Keywords: Housing markets; Incomplete preferences; Mechanism design.

JEL Classification: D47, C78.

1. Introduction

There are many situations in which the allocation of indivisible goods is done without the use of

money. For instance, the online bartering of objects, the allocation of on-campus housing to students,

the matching of patients with donors for kidney transplants, or the reallocation of students between

partner universities in exchange programs. Matching theory provides the necessary toolbox to study

these economic problems. Coalitional stability and incentives have been studied in these scenarios based

on the models introduced by Shapley and Scarf (1974), Hylland and Zeckhauser (1979), Abdulkadiroğlu

and Sönmez (1999), and Roth, Sönmez, and Ünver (2004).

The focus of this literature has always been on situations in which agents have complete preferences.1

However, given the lack of information, the complexity of obtaining it, or the absence of incentives to

be informed, there are scenarios in which some individuals cannot compare all the available alternatives.
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Moreover, incomplete preferences arise naturally in multi-objective decision making (Ok (2002)), where

agents evaluate alternatives considering various attributes that may not be easily aggregated.

It is important to remark that a model with incomplete preferences cannot be reduced to a scenario

with weak preferences. As pointed out by Aumann (1962), “indifference between two alternatives should

not be confused with incomparability; the former involves a positive decision that it is immaterial whether

the one or the other alternative is chosen, whereas the latter means that no decision is reached” (cf.,

Mandler (2005), Eliaz and Ok (2006), Arlegi, Bourgeois-Gironde, and Hualde (2022)). In addition, the

incomparability relations induced by an incomplete preference are not necessarily transitive.2 Hence,

even from a mathematical point of view, they cannot be identified with the indifference relations induced

by a complete and transitive preference.3

In this paper, we include agents with incomplete preferences in Shapley and Scarf (1974) housing

markets, a framework where the non-monetary exchange of indivisible goods is studied through a

parsimonious model in which every agent owns a “house” that can be exchanged for the property of any of

the other individuals. Shapley and Scarf (1974) focus on the existence of coalitionally stable allocations:

distributions of houses among agents such that no group can deviate to improve the well-being of all

of its members. Assuming that agents have complete, transitive, and weak preferences for houses, they

show that the set of coalitionally stable allocations is non-empty and that David Gale’s Top Trading

Cycles Algorithm (TTC) can be used to obtain one of them. A natural refinement of the solution

concept proposed by Shapley and Scarf is the strict core, defined as the set of housing allocations such

that no coalition can deviate to improve the well-being of one of its members without worsening the

others. When preferences for houses are complete, transitive, and strict, Roth and Postlewaite (1977)

show that the strict core is a singleton that can be found by applying the TTC algorithm.4 Moreover,

TTC determines the only mechanism that is Pareto efficient, individually rational, and strategy-proof in

this context (see Ma (1994)).

Some questions arise in the presence of indecisive agents: What are the natural extensions of the strict

core concept? To what extent the blocking power of coalitions is affected by the participation of agents

that cannot compare their situation before and after a deviation? Are there mechanisms that do not

incentivize agents to misreport their preferences by announcing different degrees of incompleteness?

We propose two extensions of the strict core to Shapley-Scarf housing markets with incomplete,

transitive, and strict preferences: the core and the strong core. The core is the set of allocations that

are immune to blocking coalitions that improve the well-being of every house-switching member. The

strong core is the set of allocations that are immune to blocking coalitions that may leave some members

with a house incomparable with the original.

To define the core it is assumed that members of a blocking coalition can compare the houses they

receive before and after a deviation. Essentially, when preferences are incomplete, it may be reasonable

to presume that the only agents that participate in a deviation are those who know how to contrast the

alternatives involved. As a consequence, the core has no counterpart in housing markets with complete,

transitive, and weak preferences (cf., Alcalde-Unzu and Molis (2011), Jaramillo and Manjunath (2012)),

2To illustrate this point, suppose that an agent evaluates the alternatives in A = {a1, a2, a3} considering two attributes

that she cannot aggregate into a single preference. That is, there are functions f, g : A→ R such that a is preferred to a′ if

and only if (f(a), g(a)) > (f(a′), g(a′)). Hence, when f(a2) > f(a3) > f(a1) and g(a3) > g(a1) > g(a2), the alternative a2

is incomparable with both a1 and a3. However, these incomparability relations are intransitive, since a3 is preferred to a1.
3When intransitive preferences are allowed, incomparability and indifference are indistinguishable from a mathematical

perspective. However, even in this scenario, an indecisive agent may behave differently than an indifferent one (e.g., when

evaluating whether to participate in a blocking coalition).
4Roth and Postlewaite (1977) refers to the strict core as the core defined by weak domination.
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because in the latter context it is not credible to force coalitions to leave out those who are indifferent

between the alternatives involved.5

On the other hand, the strong core is based on the idea that any agent who does not know how to

compare two houses will be available to swap them. At a first glance, when preference incompleteness is

high, this behavior may significantly reduce the set of coalitionally stable allocations.

Our concepts of coalitional stability are single-valued and coincide with the strict core when agents

have complete, transitive, and strict preferences. However, under incomplete preferences, the core may

have more than one element and the strong core may be empty (see Examples 1 and 2).

By adapting to our framework the techniques developed by Kuvalekar (2022) in marriage markets with

incomplete preferences, we show that the core can be algorithmically constructed and coincides with the

collection of allocations obtained by applying the TTC algorithm to the set of completions of agents’

preferences (Proposition 1).6 This result allows us to show that the core is a singleton only if the strong

core is non-empty and coincides with it. Moreover, the core weakly increases with the incompleteness

of preferences, a property that the strong core does not satisfy (see Corollary 1 and Example 4). As

in Shapley-Scarf housing markets with complete preferences (cf., Roth and Postlewaite (1977)), every

allocation in the (strong) core is ex-post stable (see Remark 2).

From the point of view of mechanism design, we show that there are many group strategy-proof

mechanisms that select allocations in the core. Indeed, a mechanism with these properties can be

obtained by using personalized protocols to transform agents’ incomplete preferences into strict linear

orders and then applying the TTC algorithm to the preference profile obtained (Theorem 1).7 This

result follows from the group strategy-proofness of TTC in the domain of complete, transitive, and strict

preferences (see Bird (1994) and Moulin (1995)). We also show that no mechanism that select allocations

in the core prevents the existence of a group of agents who want to misreport their preferences to improve

the well-being of at least one of them without worsening the situation of the others—in the sense that

some of them may leave with a house incomparable with the original (see Remark 3).

Notice that, when the relations of incomparability induced by incomplete preferences are transitive, the

strong core coincides with the strict core of the Shapley-Scarf housing market with complete preferences

in which incomparability is identified with indifference. Therefore, the subdomain of preferences in which

the strong core is non-empty can be identified with a superset of the collection of preference profiles in

which the strict core is non-empty (cf., Quint and Wako (2004)). Moreover, for the preference profiles

for which incomparability can be identified with indifference, the results of Wako (1991) for the strict

core allow us to show that the strong core is essentially single-valued (see Remark 4).

Assuming that agents have complete, transitive, and weak preferences, Alcalde-Unzu and Molis (2011),

Jaramillo and Manjunath (2012), and Plaxton (2013) introduce Pareto efficient, individually rational,

and strategy-proof mechanisms that select an allocation in the strict core when it is non-empty. Among

the algorithms studied by these authors, the Top Trading Absorbing Sets Mechanisms (TTAS) and the

Top Cycles Mechanisms (TC) are weakly group strategy-proof (see Ahmad (2021)).

We adapt these results to guarantee that there are efficient, individually rational, and weakly group

strategy-proof mechanisms that select allocations in the strong core when it is non-empty. More precisely,

5Furthermore, in the absence of transaction costs, there is no reason for an agent to refrain from participating in a

blocking coalition that secures her a house that she considers indifferent to the original (see Remark 1).
6A completion is a profile of strict linear orders that respect agents’ preferences. Following the ideas of Szpilrajn (1930),

we introduce the Sequential Completion Algorithm to compute all the completions of a preference profile.
7When agents have complete, transitive, and weak preferences, a rankings of houses can be used for tie-breaking

indifferences (Elhers (2014)). In our framework, we cannot apply an analogous strategy to eliminate incomparability

without compromising the transitivity of the completion obtained (see the remarks after Theorem 1).
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in the domain of preferences in which the relations of incomparability are transitive, mechanisms with

these properties are obtained when the TTAS and the TC algorithms are applied to the complete

preferences generated by identifying incomparability with indifference (Theorem 2).

Our analysis can be extended to study efficiency and incentives in the housing allocation problems

introduced by Hylland and Zeckhauser (1979) and Abdulkadiroğlu and Sönmez (1999). By appealing

to the results of Svensson (1994, 1999) and Pápai (2000) for housing allocation problems with complete

preferences, we characterize a family of (group) strategy-proof mechanisms that implement (weakly)

efficient allocations when agents have incomplete preferences (see Section 6).8

More precisely, in housing allocation problems in which existing tenants and newcomers coexists, a

weakly efficient, individually rational, and group strategy-proof mechanism can be obtained by applying

the You Request My House–I Get Your Turn mechanism introduced by Abdulkadiroğlu and Sönmez

(1999) to some completion of agents’ preferences (cf., Sönmez and Ünver (2005, 2010)). Moreover, in

the domain of preferences in which incomparability relations are transitive, an efficient, individually

rational, and weakly group strategy-proof mechanism can be obtained by applying any of the TC

algorithms introduced by Jaramillo and Manjunath (2012) to the profiles of complete preferences obtained

by identifying incomparability with indifference. For the housing allocation problems of Hylland and

Zeckhauser (1979), analogous mechanisms can be constructed based on the application of a Serial

Dictatorship Rule to a completion of preferences or to a profile of complete preferences obtained by

identifying incomparability with indifference (when it is possible to do so).

The rest of the paper is organized as follows. In Sections 2 and 3 the core and the strong core are

introduced and characterized. In Section 4 we discuss some properties of efficiency and ex-post stability.

In Section 5 we study the incentive properties of mechanisms that implement allocations in either the

core or the strong core. Our analysis is extended to housing allocation problems in Section 6, and we

include comments on topics for future research in Section 7. Some proofs are in the Appendix.

2. Model

Consider a Shapley-Scarf housing market with incomplete preferences [I,H, (�i)i∈I ] in which there

is a set I = {1, . . . , n} of agents and a collection H = {h1, . . . , hn} of houses. The house hi is owned

by agent i and the set �i⊆ H × H are the pairs of houses that she can compare, in the sense that

(h, h′) belongs to �i whenever i strictly prefers h to h′. Throughout the text, h �i h′ indicates that

(h, h′) ∈�i. The preferences induced by �i are transitive: if h �i h′ and h′ �i h′′, then h �i h′′.
An agent i considers h and h′ incomparable—denoted by h⊗i h′—when neither h �i h′ nor h′ �i h.

The relation ⊗i is not necessarily transitive: there may exist h, h′, h′′ ∈ H such that h ⊗i h′, h′ ⊗i h′′,
and h �i h′′. For this reason, by equating incomparability with indifference, we cannot always identify

the preference relation induced by �i with a complete, transitive, and weak preference relation.

Let M(�i) = {(hj , hk) ∈ H×H : hj⊗ihk, j < k} be the pairs of houses that i considers incomparable.

An agent i has incomplete preferences as long as M(�i) is non-empty.

A housing allocation is characterized by a function µ : I → H that associates a different house to

each agent. Let A be the set of housing allocations. A coalition is a non-empty subset of I. Given a

coalition C, let e(C) = {hk ∈ H : k ∈ C} be the set of houses that are property of the agents in C. We

refer to any bijective function σ : C → e(C) as an agreement among the members of C. Occasionally,

an agreement σ will be identified with the family of pairs (i, σ(i)), with i ∈ C.

8In our framework, there are two natural concepts of efficiency depending on whether a redistribution of houses may

leave some agents with an alternative incomparable with the original: weak efficiency and efficiency (see Section 4). These

concepts are equivalent to Pareto efficiency when preferences are complete.
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In this context, consider the following concepts of coalitional stability:

• A housing allocation µ is blocked by a coalition C if there is an agreement σ : C → e(C) among the

members of C such that:

(i) For all i ∈ C we have that σ(i) �i µ(i) or σ(i) = µ(i).

(ii) There exists i ∈ C such that σ(i) �i µ(i).

The core C(�) is the set of allocations in A that are not blocked by any coalition.

• A housing allocation µ is weakly blocked by a coalition C if there is an agreement σ : C → e(C)

among the members of C such that:

(i) For all i ∈ C we have that σ(i) �i µ(i), σ(i) = µ(i), or σ(i)⊗i µ(i).

(ii) There exists i ∈ C such that σ(i) �i µ(i).

The strong core CS(�) is the set of allocations in A that are not weakly blocked by any coalition.

Evidently, the strong core is a refinement of the core. Moreover, when � is a profile of complete,

transitive, and strict preferences, C(�) and CS(�) coincide with the strict core, that we denote by K(�).

The definition of C(�) implicitly restricts the blocking coalitions: if C ⊆ I blocks an allocation µ

through an agreement σ, then each member of C needs to be able to compare the houses that she

receives under µ and σ. Essentially, when preferences are incomplete, it is reasonable to assume that the

only agents that participate in a deviation are those who know how to compare the alternatives involved.

In the particular case in which (⊗)i∈I are transitive relations, C(�) is a subset of the core and a

superset of the strict core of the Shapley-Scarf housing market in which incomparability is identified

with indifference. Moreover, the strict core of this housing market coincides with CS(�), a relationship

that will allow us to analyze incentive properties of mechanisms that select allocations in the strong

core when it is non-empty (see Section 5).

The following example illustrates our concepts of coalitional stability.

Example 1. Consider a market [I,H, (�i)i∈I ] with four agents and preferences characterized by

�1: h2 �1 h3 �1 h1, h4 �1 h3 �1 h1, h2 ⊗1 h4;

�2: h1 �2 h2 �2 h3 �2 h4;

�3: h1 �3 h4 �3 h3 �3 h2;

�4: h2 �4 h4 �4 h1, h2 �4 h3 �4 h1, h3 ⊗4 h4.

Given µ ∈ A we have that:

• If µ(2) ∈ {h3, h4}, then it is blocked by the coalition {2} through the agreement [(2, h2)].

• If µ(3) = h2, then it is blocked by the coalition {3} through the agreement [(3, h3)].

• If µ(4) = h1, then it is blocked by the coalition {4} through the agreement [(4, h4)].

Since {h2, h4} are the top choices for agent 1 and h1 is the best alternative for agent 2, it follows that:

• The housing allocations [(1, h1), (2, h2), (3, h3), (4, h4)], [(1, h1), (2, h2), (3, h4), (4, h3)], and

[(1, h3), (2, h1), (3, h4), (4, h2)] are blocked by {1, 2} through the agreement [(1, h2), (2, h1)].

• The housing allocations [(1, h3), (2, h2), (3, h1), (4, h4)] and [(1, h4), (2, h2), (3, h1), (4, h3)] are

blocked by the coalition {1, 2, 4} through the agreement [(1, h4), (2, h1), (4, h2)].

We conclude that CS(�) ⊆ C(�) ⊆ {µ1, µ2, µ3}, where

µ1 = [(1, h2), (2, h1), (3, h3), (4, h4)], µ2 = [(1, h2), (2, h1), (3, h4), (4, h3)],

µ3 = [(1, h4), (2, h1), (3, h3), (4, h2)].
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Although the housing allocations µ1 and µ2 cannot be blocked by any coalition, µ1 is weakly blocked

by the coalition {3, 4} through the agreement [(3, h4), (4, h3)], and µ2 is weakly blocked by the coalition

{1, 2, 4} through the agreement [(1, h4), (2, h1), (4, h2)]. Moreover, it is not difficult to verify that µ3

cannot be weakly blocked by any coalition. Therefore, C(�) = {µ1, µ2, µ3} and CS(�) = {µ3}. �

Unlike the case with complete and strict preferences, it follows from Example 1 that the core C(�)

is not necessarily a singleton when preferences are incomplete. Moreover, although the strong core is

non-empty in this example, only C(�) will be always non-empty. Indeed, the next example describes a

market where no housing allocation belongs to the strong core.

Example 2. Let [I,H, (�i)i∈I ] be a housing market with three agents and preferences characterized by

�1: h3 �1 h1 �1 h2; �2: h3 �2 h2 �2 h1; �3: h1 �3 h3, h2 �3 h3, h1 ⊗3 h2.

Since h3 is the best alternative for agents 1 and 2, for any µ ∈ A there exists i ∈ {1, 2} such that

h3 �i µ(i). Hence, as agent 3 cannot compare h1 and h2, the coalition C = {i, 3} weakly blocks µ

through the agreement that interchanges the properties of i and 3. This implies that CS(�) = ∅. �

A preference profile (�̂i)i∈I is a completion of (�i)i∈I when the following conditions hold:

• For each agent i, �̂i is a complete, transitive, and strict preference defined on H.

• For each agent i, h �̂i h′ whenever h �i h′.

Let Co(�) be the non-empty set of completions of �= (�i)i∈I .9

Notice that, if a coalition C blocks a housing allocation µ when preferences are �, then C also blocks µ

under every �̂ ∈ Co(�). Also, if C weakly blocks µ when preferences are �, then there exists �̂ ∈ Co(�)

such that C blocks µ under �̂. Therefore, we have that⋃
�̂∈Co(�)

K(�̂) ⊆ C(�),
⋂

�̂∈Co(�)

K(�̂) ⊆ CS(�),

where K(�̂) is the strict core of the Shapley-Scarf housing market in which preferences are �̂.

It is well-known that K(�̂) is a singleton that can be obtained by the application of David Gale’s Top

Trading Cycles algorithm (TTC) to the preference profile �̂ (see Roth and Postlewaite (1977)). Hence,

the core C(�) is always non-empty.

3. Characterization of C(�) and CS(�)

In this section we characterize the core C(�) and the strong core CS(�). To achieve this goal, we

introduce the Sequential Completion Algorithm (SC), which essentially describes the process applied

by Szpilrajn (1930) to complete a preference without compromising transitivity.10 The association of

incomplete preferences to their completions will be fundamental in our results.

9The extension lemma of Szpilrajn (1930) shows that any profile of incomplete, transitive, and strict preferences has a

completion (cf., Fishburn (1970, Theorem 2.4)).
10Kitahara and Okumura (2023) and Okumura (2023) propose an alternative algorithm to generate the set of completions

of a preference profile.
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Sequential Completion Algorithm (SC)

Given a preference profile (�i)i∈I , apply the following procedure for each i ∈ I:

• Step 1: For every a, b ∈ H such that a �i b, define a �̂i b. Let Z(�i) = M(�i).
• Step 2: Fix (a, b) ∈ Z(�i) and define either a �̂i b or b �̂ia.

Step 2.1: If a �̂i b was defined, apply the following rules:

(1) If there exists c ∈ H such that c �i a and c⊗i b, define c �̂i b.
(2) If there exists c ∈ H such that b �i c and a⊗i c, define a �̂i c.

Step 2.2: If b �̂i a was defined, apply the following rules:

(1) If there exists c ∈ H such that c �i b and c⊗i a, define c �̂i a.

(2) If there exists c ∈ H such that a �i c and b⊗i c, define b �̂i c.
• Step 3: Eliminate from Z(�i) the pairs (hj , hk) ∈ H ×H, with j < k, for which it was defined

in the previous step that either hj �̂i hk or hk �̂i hj .
• Step 4: Repeat Steps 2 and 3 until Z(�i) = ∅.

By construction, the application of the SC algorithm to (�i)i∈I produces a completion of it.

Since the decisions taken at Step 2 of the SC algorithm may affect the outcome, we denote by SC(�)

the set of preferences profiles that can be generated when the Sequential Completion algorithm is applied

to a preference profile �= (�i)i∈I . In Proposition 1 we will show that Co(�) = SC(�).

The next example illustrates the implementation of the SC algorithm.

Example 3. Consider a Shapley-Scarf housing market with five houses and where agent 1 has incomplete

preferences characterized by

h3 �1 h2 �1 h1, h4 �1 h2 �1 h1, h5 �1 h1, h2 ⊗1 h5, h3 ⊗1 h4, h3 ⊗1 h5, h4 ⊗1 h5.

Since M(�1) = {(h2, h5), (h3, h4), (h3, h5), (h4, h5)}, there are eight forms to completing �1 without

compromising transitivity. The following figure shows how the SC algorithm can be used to obtain these

complete, transitive, and strict preferences:

The Sequential Completion Algorithm

Z(�1) = {(h2, h5), (h3, h4), (h3, h5), (h4, h5)}

h2 �̂1 h5

h5 �̂1 h2

h4 �̂1 h5, h3 �̂1 h5 Z(�1) = {(h3, h4)}

h3 �̂1 h4

h4 �̂1 h3

h3 �̂1 h4 �̂1 h2 �̂1 h5 �̂1 h1

h4 �̂1 h3 �̂1 h2 �̂1 h5 �̂1 h1

Z(�1) = {(h3, h4), (h3, h5), (h4, h5)}

h3 �̂1 h4 Z(�1) = {(h3, h5), (h4, h5)}

h5 �̂1 h3

h3 �̂1 h5

Z(�1) = {(h4, h5)}

h5 �̂1 h4

h3 �̂1 h5 �̂1 h4 �̂1 h2 �̂1 h1

h4 �̂1 h5

h3 �̂1 h4 �̂1 h5 �̂1 h2 �̂1 h1

h5 �̂1 h4

h5 �̂1 h3 �̂1 h4 �̂1 h2 �̂1 h1

h4 �̂1 h3Z(�1) = {(h3, h5), (h4, h5)}

h3 �̂1 h5 h5 �̂1 h3

h4 �̂1 h5

h4 �̂1 h3 �̂1 h5 �̂1 h2 �̂1 h1

Z(�1) = {(h4, h5)}

h4 �̂1 h5 h5 �̂1 h4

h4 �̂1 h5 �̂1 h3 �̂1 h2 �̂1 h1 h5 �̂1 h4 �̂1 h3 �̂1 h2 �̂1 h1

Step 2 Step 3

Step 3

Step 3

Step 3
Step 2

Step 3

Step 2

Step 3
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The following result characterizes C(�) and CS(�) in terms of the strict cores of the Shapley-Scarf

housing markets in which agents’ preferences are given by completions of �. Its proof adapts to our

framework the techniques applied by Kuvalekar (2002) to characterize coalitionally stable matchings in

marriage markets with incomplete preferences (see Appendix A).

Proposition 1. For every preference profile �= (�i)i∈I , we have that

Co(�) = SC(�),
⋂

�̂ ∈ SC(�)

TTC(�̂) ⊆ CS(�) ⊆ C(�) =
⋃

�̂ ∈ SC(�)

TTC(�̂).

It follows from Proposition 1 that the elements of C(�) can be constructed by the sequential application

of the algorithms SC and TTC to the preference profile �.

Moreover, C(�) is single-valued if and only if TTC(�̂) = TTC(�̂∗) for all �̂, �̂∗ ∈ Co(�). In this

case, the core and the strong core coincide. Hence, if the strong core is an empty set, then the core has

more than one element (Example 1 shows that the reciprocal does not hold).

From Proposition 1 we can obtain the following property of monotonicity of the core.

Corollary 1. The core C(�) weakly increases with the degree of incompleteness of preferences. That is,

given preference profiles �= (�i)i∈I and �′= (�′i)i∈I , we have that

[M(�i) ⊆M(�′i), for all i ∈ I ] =⇒ C(�) ⊆ C(�′).

Proof. Suppose that M(�i) ⊆ M(�′i) for all i ∈ I. It follows from the definition of the SC algorithm

that SC(�) ⊆ SC(�′). Hence, Proposition 1 ensures that C(�) ⊆ C(�′). �

Despite what happens with the core, it is not clear how the strong core varies as the degree

of incompleteness increases. To illustrate it, we carry out a comparative statics exercise in which

incompleteness is added sequentially to agents’ preferences.

Example 4. In any Shapley-Scarf housing market with three agents, the feasible allocations are

µ1 = [(1, h1), (2, h2), (3, h3)], µ2 = [(1, h1), (2, h3), (3, h2)],

µ3 = [(1, h2), (2, h1), (3, h3)], µ4 = [(1, h2), (2, h3), (3, h1)],

µ5 = [(1, h3), (2, h1), (3, h2)], µ6 = [(1, h3), (2, h2), (3, h1)].

We will use this notation to report the core and the strong core for a sequence of housing markets in

which the degree of preference incompleteness increases:11

The two examples above show that the strong core may shrink as the incompleteness of preferences

increases. To some extent, this result is not surprising. In fact, it could be thought that the likelihood of

finding coalitions that weakly block a housing allocation increases as preferences become more incomplete.

This is because there are greater chances that agents who cannot effectively compare houses will

participate in a blocking coalition. However, the strong core does not always behave in this way:

11The core is computed by applying the TTC algorithm to the completions of preference profiles (see Proposition 1).

In Appendix B we provide details on the strategies that can be implemented to compute the strong core.

Nicolás Leiva Dı́az developed an application that computes the core and the strong core of a housing market with

incomplete preferences: https://nleivad.shinyapps.io/apphousingmarketincompletepreferences/.
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Preference Profile Core and Strong Core

h1 �1 h2, h1 �1 h3, h2 ⊗1 h3 CS = {µ2}
h1 �2 h3 �2 h2, h1 �3 h2 �3 h3 C = {µ2}
h1 ⊗1 h2, h1 �1 h3, h2 ⊗1 h3 CS = ∅
h1 �2 h3 �2 h2, h1 �3 h2 �3 h3 C = {µ2, µ3}

Preference Profile Core and Strong Core

h2 �1 h3 �1 h1 CS = {µ3}
h1 �2 h3 �2 h2 C = {µ3}
h1 �3 h2 �3 h3

h2 �1 h1, h3 �1 h1, h2 ⊗1 h3 CS = ∅
h1 �2 h3 �2 h2 C = {µ3, µ6}
h1 �3 h2 �3 h3

h2 �1 h1, h3 �1 h1, h2 ⊗1 h3 CS = {µ4}
h1 �2 h2, h3 �2 h2, h1 ⊗2 h3 C = {µ3, µ4, µ6}

h1 �3 h2 �3 h3

h2 �1 h1, h3 �1 h1, h2 ⊗1 h3 CS = {µ4, µ5}
h1 �2 h2, h3 �2 h2, h1 ⊗2 h3 C = {µ2, µ3, µ4, µ5, µ6}
h1 �3 h3, h2 �3 h3, h1 ⊗3 h2

h3 ⊗1 h1, h2 ⊗1 h1, h2 ⊗1 h3 CS = {µ2, µ4, µ5}
h1 �2 h2, h3 ⊗2 h2, h1 ⊗2 h3 C = {µ1, µ2, µ3, µ4, µ5, µ6}
h1 �3 h3, h2 ⊗3 h3, h1 ⊗3 h2

What ends up happening in these examples is related to a factor that is less evident: adding

incompleteness at the top of preferences may prevent the existence of agents that can improve their

situation. In other words, in the last examples the strong core increases because the number of coalitions

with at least one agreement in which some member is strictly better off decreases. �

Corollary 2. Let [I,H, (�i)i∈I ] be a Shapley-Scarf housing market in which only agent i has incomplete

preferences. If the core is not single-valued, then the following properties hold:

(a) There are no two core allocations in which i receives the same house.

(b) Agent i cannot compare the houses that she receives in core allocations.

Proof. To prove that (a) holds, let µ, η ∈ C(�) be such that µ(i) = η(i). Since �−i= (�j)j 6=i are complete

preferences, it follows from Proposition 1 that there are completions �̂µi and �̂ηi of the preferences of

agent i such that TTC(�̂µi ,�−i)(i) = µ(i) = η(i) = TTC(�̂ηi ,�−i)(i). Since the TTC mechanism is

group strategy-proof in the domain of complete and strict preferences (see Bird (1984), Moulin (1995,

Lemma 3.3)), it is non-bossy in that domain (see Pápai (2000)). Hence, µ and η coincide.

To prove that (b) holds, suppose that there are allocations µ, η ∈ C(�) such that µ(i) �i η(i). Hence,

Proposition 1 implies that there are completions �̂µi and �̂ηi of the preferences of agent i such that

TTC(�̂µi ,�−i)(i) = µ(i) �i η(i) = TTC(�̂ηi ,�−i)(i). Since µ(i) �i η(i) implies that µ(i) �̂ηi η(i), we

obtain a contradiction with the fact that TTC is strategy-proof in the domain of complete and strict

preferences (see Roth (1982)). �
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Example 1 demonstrates that Corollary 2 does not hold when more than one agent has incomplete

preferences. Moreover, when only one agent has incomplete preferences, the other agents may receive

different and comparable houses in two core allocations (see Example 4).

Remark 1 [On the role of transaction costs in models with complete and weak preferences]

In Shapley-Scarf housing markets in which agents have complete, transitive, and weak preferences, the

strict core may be an empty set (cf., Shapley and Scarf (1974)). Intuitively, this situation is generated

by the willingness of agents to swap houses that they consider indifferent.

Our results for markets with incomplete preferences guarantee that the strict core of a market with

complete and weak preferences is non-empty under transaction costs. Formally, let [I,H, (ui)i∈I ] be a

housing market in which every agent i has a utility function ui : H → R. If house-switching members of

blocking coalitions must pay a positive transaction cost, then no agent will participate in a deviation to

exchange houses that she considers indifferent. Also, depending on the magnitude of transaction costs,

there may be agents that refrain to participate in a blocking coalition even when they know that they

will receive a strictly preferred house after the deviation. Hence, the strict core of [I,H, (ui)i∈I ] contains

the core of the housing market [I,H, (�i)i∈I ] in which there is no transaction costs and agents have

potentially incomplete preferences characterized by h �i h′ if and only if ui(h) > ui(h′). Therefore, our

Proposition 1 implies that [I,H, (ui)i∈I ] has a non-empty strict core. �

4. On efficiency and ex-post stability

In the presence of agents with incomplete preferences, there are two natural concepts of efficiency

depending on whether a redistribution of houses may leave some agents with an alternative that is

incomparable with the original. These concepts, which we refer to as weak efficiency and efficiency , are

equivalent to Pareto efficiency when preferences are complete.

More formally, given a housing market [I,H, (�i)i∈I ] and an allocation µ ∈ A, we will say that

• µ is weakly efficient when it cannot be blocked by the grand coalition I.

• µ is efficient when it cannot be weakly blocked by the grand coalition I.

Notice that, for the preference profiles �∈ Pn that induce transitive relations (⊗i)i∈I , efficiency is

analogous to Pareto efficiency whenever incomparability is equiparable with indifference.

Although any allocation in the core is weakly efficient and any allocation in the strong core is efficient,

the next example shows that there are housing markets in which no allocation in the core is efficient

(when this occurs, the strong core is empty).12

Example 5. Let [I,H, (�i)i∈I ] be a housing market with three agents in which preferences are given by

�1: h3 �1 h2 �1 h1; �2: h3 �2 h1 �2 h2; �3: h1 �3 h3, h2 �3 h3, h1 ⊗3 h2.

It follows from Proposition 1 that C(�) = {[(1, h3), (2, h2), (3, h1)], [(1, h1), (2, h3), (3, h2)]}.
Notice that, the grand coalition can weakly block the housing allocation [(1, h3), (2, h2), (3, h1)] to

implement [(1, h3), (2, h1), (3, h2)], and it can also weakly block [(1, h1), (2, h3), (3, h2)] to implement

[(1, h2), (2, h3), (3, h1)]. Thus, no housing allocation in C(�) is efficient. �

12In Example 2, the strong core is empty and the core allocation [(1, h3), (2, h2), (3, h1)] is efficient. Hence, the

non-existence of efficient core allocations is only sufficient to guarantee that the strong core is an empty set.
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Remark 2 [On the ex-post stability of coalitionally stable allocations]

Let C(�, µ) and CS(�, µ) be the core and the strong core when endowments are determined by µ ∈ A.

Hence, if e ∈ A satisfies e(i) = hi for all i ∈ I, then C(�) ≡ C(�, e) and CS(�) ≡ CS(�, e).
A housing allocation µ is stable when no coalition blocks it ex-post , in the sense that µ ∈ C(�, µ). Like

in Shapley-Scarf markets with complete and transitive preferences (see Roth and Postlewaite (1977)), in

our framework stability coincides with weak efficiency:

• If there exists a coalition C that blocks µ through an agreement σ : C → µ(C), then the grand

coalition I blocks µ through the agreement σ̃ : I → H characterized by (σ̃(i), σ̃(j)) = (σ(i), µ(j))

for all (i, j) ∈ C × (I \ C). Therefore, weak efficiency implies stability.

• Since each allocation in C(�, µ) is weakly efficient, stability implies weak efficiency.

As a consequence, any allocation in the core C(�) is stable.

A housing allocation µ is strongly stable as long as µ ∈ CS(�, µ). By analogous arguments to those

made above, we can show that strong stability coincides with efficiency. In particular, any allocation in

the strong core is strongly stable. �

5. Mechanism design under incompleteness

In this section, we characterize mechanisms that implement allocations in either the core or the strong

core without incentivizing agents to misreport preferences.

Given a set of agents I = {1, . . . , n} and a set of houses H = {h1, . . . , hn}, where hi is owned by i,

denote by P the set of (potentially) incomplete, transitive, and strict preferences defined on H.

For a preference domain D ⊆ Pn, a mechanism is a function Ω : D → A that associates to each

preference profile (�i)i∈I ∈ D a housing allocation of the Shapley-Scarf housing market (I,H, (�i)i∈I).
Given a mechanism Ω : D → A, consider the following properties:

• Ω is core-selecting whenever Ω(�) ∈ C(�) for any �∈ D.

• Ω is strong core-selecting whenever Ω(�) ∈ CS(�) for any �∈ D.

• Ω is strategy-proof as long as—independently of the preferences of other individuals—no agent

has incentives to misreport preferences when Ω is implemented. That is, there is no agent i such

that, for some �= (�j)j∈I ∈ D and �′i∈ P, it holds that (�′i,�−i) ∈ D and

Ω(�′i,�−i)(i) �i Ω(�)(i),

where �−i= (�j)j 6=i are the preferences of agents in I \ {i}.13

• Ω is weakly group strategy-proof as long as—independently of the preferences of other

individuals—no group of agents can misreport preferences to improve the well-being of all of its

members. That is, there is no coalition C such that, for some preference profiles �= (�j)j∈I ∈ D
and �′C= (�′j)j∈C ∈ P |C| it holds that (�′C ,�−C) ∈ D and

Ω(�′C ,�−C)(i) �i Ω(�)(i), ∀i ∈ C,

where �−C= (�j)j /∈C are the preferences of agents in I \ C.

• Ω is group strategy-proof as long as—independently of the preferences of other individuals—no

group of agents has incentives to misreport preferences when Ω is implemented. That is, there is

no coalition C such that, for some preference profiles �= (�j)j∈I ∈ D and �′C= (�′j)j∈C ∈ P |C|

it holds that (�′C ,�−C) ∈ D and

13When D =
∏
i∈I Pi, with Pi ⊆ P for all i ∈ I, a mechanism Ω : D → A is strategy-proof if and only if the truthful

revelation of preferences is a dominant strategy equilibrium in the game in which the allocation Ω((�i)i∈I) is implemented

when each agent i reports preferences �i∈ Pi.
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(i) For each agent i ∈ C, Ω(�′C ,�−C)(i) �i Ω(�)(i) or Ω(�′C ,�−C)(i) = Ω(�)(i).

(ii) There exists i ∈ C such that Ω(�′C ,�−C)(i) �i Ω(�)(i).

• Ω is individually rational when there is no i ∈ I such that hi �i Ω(�)(i) for some �∈ D.

As a consequence of Proposition 1, a mechanism Ω : Pn → A is core-selecting if and only if, for each

preference profile �, Ω(�) can be obtained by the application of TTC to a completion of �.

The following example illustrates that the way in which these completions are chosen may incentivize

agents to misreport preferences.

Example 6. Consider a Shapley-Scarf housing market with four agents and let �= (�i)i∈I be the

preference profile characterized by

�1: h4 �1 h3 �1 h1, h2 �1 h3 �1 h1, h2 ⊗1 h4; �3: h1 �3 h2 �3 h3 �3 h4;

�2: h4 �2 h2 �2 h1, h4 �2 h3 �2 h1, h3 ⊗2 h2; �4: h1 �4 h4 �4 h3 �4 h2.

Applying the TTC algorithm to the completions of �, it follows from Proposition 1 that the

correspondence between the elements of Co(�) and the housing allocations in C(�) is given by:

�̂ ∈ Co(�) TTC(�̂)

h4 �̂1 h2 �̂1 h3 �̂1 h1, h4 �̂2 h2 �̂2 h3 �̂2 h1, �̂3 =�3, �̂4 =�4 µ1 = [(1, h4), (2, h2), (3, h3), (4, h1)]

h2 �̂1 h4 �̂1 h3 �̂1 h1, h4 �̂2 h2 �̂2 h3 �̂2 h1, �̂3 =�3, �̂4 =�4 µ3 = [(1, h2), (2, h4), (3, h3), (4, h1)]

h4 �̂1 h2 �̂1 h3 �̂1 h1, h4 �̂2 h3 �̂2 h2 �̂2 h1, �̂3 =�3, �̂4 =�4 µ2 = [(1, h4), (2, h3), (3, h2), (4, h1)]

h2 �̂1 h4 �̂1 h3 �̂1 h1, h4 �̂2 h3 �̂2 h2 �̂2 h1, �̂3 =�3, �̂4 =�4 µ3 = [(1, h2), (2, h4), (3, h3), (4, h1)]

Let Ω : P4 → A be a core-selecting mechanism such that Ω(�) = µ1 and Ω(�−2,�′2) = µ3, where

h4 �′2 h2 �′2 h3 �′2 h1. Since agent 2 prefers h4 to h2 under �2, she has incentives to misreport her

preferences when Ω is implemented and preferences are �. Thus, Ω is not strategy-proof.

Since Ω is core-selecting, it follows from the table above that

Ω(�1,�2,�3,�4) = TTC(�′1,�′2,�3,�4), Ω(�1,�′2,�3,�4) = TTC(�∗1,�′2,�3,�4)

where �′1 and �∗1 are characterized by h4 �′1 h2 �′1 h3 �′1 h1 and h2 �∗1 h4 �∗1 h3 �∗1 h1.

Therefore, what is happening in this example is that the completions that are chosen for agent i = 1

do not only depend on her reported preferences. �

Let Q ( P be the set of complete, transitive, and strict preferences defined on H.

Denote by G the set of functions g : P → Q such that g(�i) is a completion of �i.

It is well-known that the TTC mechanism is core-selecting and group strategy-proof in the preference

domain Qn (cf., Shapley and Scarf (1974), Bird (1984), Moulin (1995, Lemma 3.3)). This classical

result jointly with our Proposition 1 allow us to find a family of core-selecting and group strategy-proof

mechanisms defined on scenarios where agents may have incomplete preferences.

Theorem 1. Let Ω : Pn → A be a mechanism such that, for some functions g1, . . . , gn ∈ G,

Ω(�1, . . . ,�n) = TTC(g1(�1), . . . , gn(�n)).

Then, Ω is core-selecting and group strategy-proof.
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Proof. The mechanism Ω is core-selecting since it associates to every preference profile �∈ Pn the result

of the TTC algorithm applied to a completion of � (see Proposition 1).

Suppose that Ω is not group strategy-proof. Hence, there is a coalition C such that, for some preference

profiles �= (�i)i∈I ∈ Pn and (�′i)i∈C ∈ P |C|, the following conditions hold:

• For each i ∈ C, Ω(�′C ,�−C)(i) �i Ω(�)(i) or Ω(�′C ,�−C)(i) = Ω(�)(i).

• There exists i ∈ C such that Ω(�′C ,�−C)(i) �i Ω(�)(i).

Since the functions g1, . . . , gn belong to G, we have that P ≡ (Pi)i∈I = (gi(�i))i∈I ∈ Co(�) ⊆ Qn

and P ′C ≡ (P ′i )i∈C = (gi(�′i))i∈C ∈ Q|C|.
Thus, the definition of Ω and the properties above imply that:

• For each i ∈ C, either TTC(P ′C , P−C)(i) Pi TTC(P )(i) or TTC(P ′C , P−C)(i) = TTC(P )(i),

where P−C = (Pj)j∈I\C .

• There exists i ∈ C such that TTC(P ′i , P−i)(i) Pi TTC(P )(i).

We conclude that the TTC mechanism is not group strategy-proof in Qn, a contradiction. �

As a consequence of Theorem 1, a mechanism that transforms the preferences �i reported by an agent

i into a strict linear order using a common protocol g : P → Q—and afterwards applies the algorithm

TTC to the profile (g(�i))i∈I—is core-selecting and strategy-proof. However, this common protocol

g cannot be induced by a ranking of houses, in the sense that a ⊗i b becomes a �i b whenever a is

better ranked than b. Indeed, in contrast with what happens in housing markets with weak preferences

(Elhers (2014)), transforming incomparabilities using a ranking may compromise the transitivity of the

completion obtained. For instance, assume that h⊗ih′, h⊗ih′′, and h′ �i h′′. If we use a ranking of houses

to transform incomparabilities into strict preferences, when h has a better ranking than h′, the only

completion is h �̂i h′ �̂i h′′. Hence, it is impossible to induce a completion using the ranking h′′ > h > h′.

Given a mechanism Ω : Pn → A, we will say that Ω is strongly group strategy-proof as long as there

is no coalition C such that, for some preference profiles �∈ Pn and �′C∈ P |C|, it holds that

(i) There is no agent i ∈ C such that Ω(�)(i) �i Ω(�′C ,�−C)(i).

(ii) There exists i ∈ C such that Ω(�′C ,�−C)(i) �i Ω(�)(i).

In other words, Ω is strongly group strategy-proof when, independently of the preferences of other

individuals, no group of agents has incentives to misreport preferences in order to improve the well-being

of at least one of its members without worsening the situation of the others.

Remark 3 [No core-selecting mechanism is strongly group strategy-proof ]

Consider a Shapley-Scarf housing market with n agents in which only agent 3 has incomplete

preferences and �= (�i)i∈{1,...,n} satisfies the following conditions:

�1: h3 �1 h1 �1 · · · ,

�2: h3 �2 h2 �2 · · · ,

�3: h1 �3 h3 �3 h4 �3 · · · �3 hn, h2 �3 h3, h1 ⊗3 h2,

�i: hi+1 �i hi �i · · · ∀i ∈ {4, . . . , n− 1},

�n: h4 �n hn �n · · · .
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It follows from Proposition 1 that the TTC mechanism can be applied to the completions of �
to verify that the housing allocations µ1 = [(1, h1), (2, h3), (3, h2), (4, h5), . . . , (n − 1, hn), (n, h4)] and

µ2 = [(1, h3), (2, h2), (3, h1), (4, h5), . . . , (n− 1, hn), (n, h4)] are the only elements of the core C(�).

As a consequence, given any core-selecting mechanism Ω : Pn → A, there are two possibilities:

• If Ω(�) = µ1, then agent 1 improves her situation and agent 3 is not worst when the coalition

{1, 3} reports preferences (�1,�′3), where �′3 is a complete preference satisfying h1 �′3 h2 �′3
h3 �′3 · · · . Indeed, Ω(�−3,�′3) = µ2 since the core satisfies C(�−3,�′3) = {µ2}.

• If Ω(�) = µ2, then agent 2 improves her situation and agent 3 is not worst when the coalition

{2, 3} reports preferences (�2,�∗3), where �′3 is a complete preference satisfying h2 �∗3 h1 �∗3
h3 �∗3 · · · . Indeed, Ω(�−3,�∗3) = µ1 since C(�−3,�∗3) = {µ1}.

We conclude that no core-selecting mechanism Ω : Pn → A is strongly group strategy-proof. �

Let R ⊆ P be the set of preferences that induce transitive incomparability relations. If R̃ is the set

of complete, transitive, and weak preferences defined on H, then R and R̃ and can be identified through

the bijection τ : R → R̃ characterized by

h τ(�i)h′ ⇐⇒ [h �i h′ or h = h′ or h⊗i h′ ] .

In other words, under τ(�i) a house h is at least as preferred as another house h′ when h′ �i h does

not hold. As a consequence, h and h′ are indifferent under τ(�i) if and only if h⊗i h′.
Notice that, for any preference profile �= (�i)∈I ∈ Rn and housing allocation µ ∈ A,

• CS(�) coincides with the strict core of the Shapley-Scarf housing market [I,H, (τ(�i))i∈I ].14

• µ efficient in [I,H, (�i)i∈I ] if and only if it is Pareto efficient in [I,H, (τ(�i))i∈I ].

Let D∗ ⊆ Pn be the set of preference profiles �= (�i)i∈I such that the strong core CS(�) is non-empty.

It follows from Examples 1, 2, and 4 that Qn ( D∗ ∩Rn ( D∗ ( Pn.
Moreover, by identifying incomparability with indifference, the mapping (�i)i∈I −→ (τ(�i))i∈I

determines a one-to-one correspondence between the elements in D∗ ∩Rn and the complete, transitive,

and weak preference profiles for which the strict core is non-empty.15

Alcalde-Unzu and Molis (2011) and Jaramillo and Manjunath (2012) generalize the TTC algorithm

to account for the presence of indifferences in Shapley-Scarf housing markets with complete preferences.

The algorithms that they introduce—Top Trading Absorbing Sets Mechanisms (TTAS) and Top Cycles

Mechanisms (TC)—are weakly group strategy-proof in R̃n and implement an allocation in the strict

core when it is non-empty (see Aziz and Keijzer (2012), Ahmad (2021)).16 We will appeal to these

results to characterize incentive properties of strong-core-selecting mechanisms.

14The strict core of [I,H, (τ(�i))i∈I ] is the set of housing allocations µ ∈ A for which there is no coalition C such that,

for some agreement σ among its members, the following conditions hold: (i) for all i ∈ C, the house σ(i) is at least as

preferred as µ(i) under τ(�i); and (ii) there exists i ∈ C such that σ(i) is strictly preferred to µ(i) under τ(�i).
15The necessary and sufficient conditions determined by Quint and Wako (2004) to characterize the preference profiles

in which the strict core is non-empty could be adapted to our framework to characterize D∗ ∩Rn.
16The mechanisms introduced by Alcalde-Unzu and Molis (2011) and Jaramillo and Manjunath (2012) are based on

algorithms that require choosing between cycles composed of agents and houses. This is done using a prioritization of I

or H. To simplify the notation, the symbols TTAS and TC do not make reference to these underlying priority rankings.
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Theorem 2. The mechanisms Ω1,Ω2 : Rn → A characterized by

Ω1(�) = TTAS(τ(�1), . . . , τ(�n)) and Ω2(�) = TC(τ(�1), . . . , τ(�n))

are efficient, individually rational, and weakly group strategy-proof. Moreover, these mechanisms select

allocations in the strong core when it is non-empty.

Proof. Let �= (�i)i∈I ∈ Rn. Since � induces transitive incomparability relations, the set of efficient

and individually rational allocations of [I,H,�] coincides with the collection of Pareto efficient and

individually rational allocations of [I,H, (τ(�i))i∈I ]. On the other hand, Corollary 1 and Theorem 2 in

Alcalde-Unzu and Molis (2011) and Proposition 3 in Jaramillo and Manjunath (2012) ensure that the

housing allocations TTAS((τ(�i))i∈I) and TC((τ(�i))i∈I) are Pareto efficient and individually rational.

Therefore, the mechanisms Ω1 and Ω2 are efficient and individually rational.

Since CS(�) coincides with the strict core of [I,H, (τ(�i))i∈I ], the results of Alcalde-Unzu and Molis

(2011, Theorem 4) and Aziz and Keijzer (2012, Corollary 1) ensure that Ωi(�) ∈ CS(�) for each i ∈ {1, 2}.
If Ω1 is not weakly group strategy-proof in Rn, then there exist C ⊆ I, �= (�i)i∈I ∈ Rn, and

(�′i)i∈C ∈ R|C| such that Ω1(�′C ,�−C)(i) �i Ω1(�)(i) for all i ∈ C. Hence, when preferences are

(τ(�i))i∈C , each i ∈ C strictly prefers TTAS((τ(�′j))j∈C , (τ(�j))j /∈C)(i) to TTAS(τ(�1), . . . , τ(�n))(i).

This contradicts Ahmad (2021, Proposition 2), which proves that TTAS is weakly group strategy-proof

in the domain of preferences R̃n. Analogously, Ω2 is weakly group strategy-proof in Rn as a consequence

of Ahmad (2021, Proposition 3). �

Plaxton (2013) introduces a family of strategy-proof mechanisms defined on R̃n that implement

allocations in the strict core when it is non-empty and reduce the computational complexity of both

TTAS and TC. Analogous arguments to those made in the proof of Theorem 2 ensure that any

of these mechanisms Γ : R̃n → A induces a strong core-selecting and strategy-proof mechanism in

D∗∩Rn through the rule that associates to each �= (�i)i∈I the housing allocation Γ(τ(�1), . . . , τ(�n)).

It follows from Theorems 1 and 2 that there are several mechanisms satisfying (weak) efficiency,

individual rationality, and strategy-proofness. This result differs from what occurs in Shapley-Scarf

housing markets with complete, transitive, and strict preferences, where TTC is the only Pareto efficient,

individually rational, and strategy-proof mechanism (see Ma (1994)).

Remark 4 [On the essential single-valuedness of the strong core]

We will say that CS(�) is essentially single-valued when for each agent i and for all µ, η ∈ CS(�) we

have that either µ(i) = η(i) or µ(i)⊗i η(i). We claim that the strong core is essentially single-valued in

the subdomain Rn. Notice that, for each preference profile �∈ Rn:

• CS(�) coincides with the strict core of the housing markets (I,H, (τ(�i))i∈I).
• CS(�) is essentially single-valued if and only if each agent considers all the allocations in the

strict core of (I,H, (τ(�i))i∈I) indifferent.

Therefore, the claim follows from Theorem 2 in Wako (1991) (cf., Ma (1994, Theorem 3) and Quint

and Wako (2004, Theorem 7.4)). As a consequence, any attempt to find �∈ Pn such that CS(�) is not

essentially single-valued must concentrate on those profiles of preferences for which the relations (⊗i)i∈I
induced by � are intransitive. �
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6. Extensions to housing allocation problems

In this section we extend our results to the housing allocation problems introduced by Hylland

and Zeckhauser (1979) and Abdulkadiroğlu and Sönmez (1999), in which there are agents without

endowments and vacant houses.

Housing allocation with existing tenants. Let [I1, I2, H, (�i)i∈I1∪I2 ] be a housing allocation problem

with existing tenants and incomplete preferences in which there is a set H = {h1, . . . , hn} of houses and

a set I = I1 ∪ I2 of agents, where I1 = {1, . . . ,m} is a set of tenants and I2 = {m+ 1, . . . , n} is a set of

newcomers. It is assumed that hi is occupied by agent i ∈ I1 and that hj is vacant for each j > m.

As in the previous sections, �i⊆ H ×H is the set of pairs (h, h′) such that h is strictly preferred to

h′ by agent i ∈ I. Moreover, each �i induces an incomplete, transitive, and strict preference for houses,

and the associated relation of incomparability ⊗i is not necessarily transitive.

In this context, given a housing allocation µ we will say that

• µ is weakly efficient when there is no η ∈ A that dominates it, in the sense that

– η(j) �j µ(j) or η(j) = µ(j) for all j ∈ I,

– η(i) �i µ(i) for some i ∈ I.

• µ is efficient when there is no η ∈ A that strongly dominates it, in the sense that

– η(j) �j µ(j), η(j) = µ(j), or η(j)⊗j µ(j) for all j ∈ I,

– η(i) �i µ(i) for some i ∈ I.

• µ is individually rational when there is no tenant i ∈ I1 such that hi �i µ(i).

Let WIR(�) be the set of weakly efficient and individually rational housing allocations, and E IR(�)

be the set of efficient and individually rational allocations. As weak efficiency and efficiency coincide for

any profile of complete, transitive, and strict preferences, WIR(�) = E IR(�) for all �∈ Qn.

Since A is a finite set and the dominance relation is strict and transitive, WIR(�) is non-empty for all

preference profiles �∈ Pn. However, as the following example illustrates, when the relations (⊗i)i∈I1∪I2
induced by � are intransitive, E IR(�) can be an empty set.

Example 7. Consider a housing allocation problem with three houses and three agents such that

I1 = {1} and I2 = {2, 3}. Assume that, for each agent i, h1 �i h2, h1 ⊗i h3, and h2 ⊗i h3. Given a

housing allocation µ, denote by i, j, k ∈ I the agents that satisfy µ(i) = h1, µ(j) = h2, and µ(k) = h3.

Let η ∈ A be such that η(i) = h3, η(j) = h1, and η(k) = h2. It follows that µ is strongly dominated

by η. Since µ was arbitrary, we conclude that the set of efficient allocations is empty, which implies that

E IR(�) is an empty set too. �

Since the strong dominance relation is strict and transitive in the preference domain Rn, the finiteness

of A ensures that E IR(�) is non-empty for all �∈ Rn.

Moreover, for any �= (�i)i∈I1∪I2 ∈ Rn, the set E IR(�) coincides with the collection of Pareto

efficient and individually rational allocations of the housing allocation problem with existing tenants and

weak preferences [I1, I2, H, (τ(�i))i∈I1∪I2 ], where τ : R → R̃ is the function that associates incomplete

preferences with weak preferences by identifying incomparability with indifference (see Section 5).

When agents have complete, transitive, and strict preferences, Abdulkadiroğlu and Sönmez (1999)

extend the Top Trading Cycles mechanism to housing allocation problems in which tenants and

newcomers coexist. More precisely, given a bijective function f : {1, . . . , n} → I representing an ordering

of agents, these authors introduce a mechanism ϕf : Qn → A that associates to any preference profile the
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outcome of a variant of the TTC algorithm that respects the property rights of existing tenants and—at

each step of the process—gives the ownership of remaining vacant houses to the unmatched agent with

the highest priority under f . Since the mechanism ϕf is Pareto efficient and individually rational in the

preference domain Qn (cf., Abdulkadiroğlu and Sönmez (1999)), it follows that⋃
f∈F

ϕf (�) ⊆ E IR(�) =WIR(�), ∀ �∈ Qn,

where F is the set of orderings of agents. Also, ϕf is group strategy proof in Qn (cf., Pápai (2000)).17

Furthermore, in the domain of complete and transitive preferences, the mechanism TC : R̃n → A
introduced by Jaramillo and Manjunath (2012) can be applied to housing allocation problems with

existing tenants and always generates a Pareto efficient and individually rational allocation.

These properties allow us to adapt our previous findings to show that:

• For any preference profile �∈ Pn,⋂
�̂ ∈ SC(�)

WIR(�̂) ⊆ E IR(�) ⊆ WIR(�) =
⋃

�̂ ∈ SC(�)

WIR(�̂).

• Given an ordering f of agents and functions g1, . . . , gn ∈ G, the mechanism

Φ(�1, . . . ,�n) = ϕf (g1(�1), . . . , gn(�n))

is weakly efficient, individually rational, and group strategy-proof in Pn.

• The mechanism

Ψ(�1, . . . ,�n) = TC(τ(�1), . . . , τ(�n))

is efficient, individually rational, and weakly group strategy-proof in Rn.

The proof of these claims is given in Appendix C.

Housing allocation. Let [I,H, (�i)i∈I ] be a housing allocation problem with incomplete preferences in

which there is a set I = {1, . . . , n} of agents, a set H = {h1, . . . , hn} of houses, and a profile (�i)i∈I ∈ Pn

determining the (potentially) incomplete preferences of agents in I. Unlike what happens in Shapley-Scarf

housing markets, in this context all houses are initially vacant.

Denote by W(�) and E(�) the sets of weakly efficient and efficient housing allocations, respectively.

Since A is a finite set and the dominance relation is strict and transitive, W(�) is always non-empty.

On the other hand, E(�) can be an empty set (see Example 7). However, for any preference profile

�= (�i)i∈I ∈ Rn, the set E(�) is non-empty and coincides with the collection of Pareto efficient

allocations of the housing allocation problem [I,H, (τ(�i))i∈I ].

In housing allocation problems with complete, transitive, and weak preferences, Svensson (1994) shows

that the mechanism SDf : R̃n → A that implements the serial dictatorship algorithm induced by an

ordering f of agents is Pareto efficient and strategy-proof (cf., Bogomolnaia, Deb, Elhers (2005)).

Moreover, any Pareto efficient allocation is the outcome of a serial dictatorship mechanism (see

Svensson (1994)). In the sub-domain Qn ( R̃n of complete, transitive, and strict preferences, the

mechanism SDf becomes group strategy-proof (cf., Svensson (1999), Papai (2000), Elhers (2002)).

17Abdulkadiroğlu and Sönmez (1999) also introduce the mechanism You Request My House–I Get Your Turn, which is

equivalent to ϕf (cf., Sönmez and Ünver (2005, 2010)).
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These results allow us to show that the following properties hold:

• For any preference profile �∈ Pn,⋂
�̂ ∈ SC(�)

⋃
f∈F

SDf (�̂) ⊆ E(�) ⊆ W(�) =
⋃

�̂ ∈ SC(�)

⋃
f∈F

SDf (�̂),

where F is the set of orderings of agents.

• Given an ordering f of agents and functions g1, . . . , gn ∈ G, the mechanism

Φ(�1, . . . ,�n) = SDf (g1(�1), . . . , gn(�n))

is weakly efficient and group strategy-proof in Pn.

• Given an ordering f of agents, the mechanism

Ψ(�1, . . . ,�n) = SDf (τ(�1), . . . , τ(�n))

is efficient and strategy-proof in Rn.

The proof of these claims is given in Appendix C.

For housing allocation problems, Elhers (2002) shows that Pareto efficiency is incompatible with group

strategy-proofness in the domain R̃n of complete, transitive, and weak preferences. Although R̃n can be

identified with the set Rn ⊆ Pn of preference profiles that induce transitive incomparability relations,

the weak efficiency and group strategy-proofness of Φ(�1, . . . ,�n) = SDf (g1(�1), . . . , gn(�n)) do not

contradict Elhers’ result. Indeed, weak efficiency is weaker than Pareto efficiency in Rn.

7. Concluding Remarks

We added incomplete preferences to the housing market of Shapley and Scarf (1974) and the housing

allocation problems of Hylland and Zeckhauser (1979) and Abdulkadiroğlu and Sönmez (1999).

In Shapley-Scarf housing markets, we have proposed and characterized two concepts of coalitional

stability: the core and the strong core. We have shown that the core coincides with the competitive

allocations of the markets in which agents rank houses following completions of their preferences (cf.,

Roth and Postlewaite (1977)). As a consequence, when blocking coalitions can only include informed

individuals, the incompleteness of preferences induces indeterminacy. On the other hand, since the strong

core may be an empty set, the existence of coalitionally stable solutions is compromised when those who

participate in a blocking coalition do not necessarily know how to compare their situation before and

after the deviation. Intuitively, the inclusion of uninformed agents in a coalition increases the blocking

power of the other members.

From the perspective of incentives, we have shown that there are many core-selecting mechanisms

that are group strategy-proof in the full domain of preferences. Moreover, in the domain of preferences

in which incomparability relations are transitive, there exist several efficient, individually rational, and

weakly group strategy-proof mechanisms that select allocation in the strong core when it is non-empty.

In the housing allocation problem introduced by Hylland and Zeckhauser (1979), we have shown that

an allocation is weakly efficient if and only if it is the outcome of a serial dictatorship rule applied

to some completion of agents’ preferences. Thus, a mechanism that applies a serial dictatorship rule

to a completion of agents’ preferences is weakly efficient and group strategy-proof in the full domain of

preferences. Moreover, in the domain of preferences in which the incomparability relations are transitive,
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we found several efficient and strategy-proof mechanisms: it is sufficient to apply a serial dictatorship

rule to the complete preferences obtained by identifying incomparability with indifference.

Analogous results hold for the housing allocation problem with existing tenants introduced by

Abdulkadiroğlu and Sönmez (1999). Indeed, by replacing the serial dictatorship rule with one of

the extensions of the TTC algorithm introduced by these authors—any version of You Request My

House–I Get Your Turn—we obtain a weakly efficient, individually rational, and group strategy-proof

mechanism in the full domain of preferences. Furthermore, restricting preference profiles to those in

which incomparabilities are transitive, we obtain an efficient, individually rational, and weakly group

strategy-proof mechanism by applying any of the algorithms introduced by Jaramillo and Manjunath

(2012) to the complete preferences obtained by identifying incomparability with indifference.

A direction to extend our results is to study kidney exchange when patients do not have enough

information to compare all potential donors. Indeed, incompleteness of preferences appears naturally

in this context, because medical tests to determine the compatibility between patients and donors only

generate partial information (see Smeulders, Bartier, Crama, Spieksma (2021)). Moreover, allowing

patients to report incomplete preferences may increase the number of agents in kidney exchange

platforms, since the complexity inherent to the process of evaluating potential donors discourages

participation (cf., Sönmez, Ünver, and Yenmez (2020)).

As Roth, Sönmez, and Ünver (2004) point out, the outside option that the cadaveric waiting list

represents—the possibility of receiving a lottery instead of a kidney from a living donor—makes a kidney

exchange platform more complex than a Shapley-Scarf housing market. Nevertheless, by analogy with

our results, we would expect that an efficient, individually rational, and strategy-proof mechanism can

be obtained by applying the Top Trading Cycles and Chains algorithm introduced by Roth, Sönmez, and

Ünver (2004) to a completion of incomplete preferences. From a logistical point of view, it can also be

interesting to study the existence of coalitionally stable or efficient allocations that minimize the size of

the “trading cycles” involved in their implementation (cf., Ashlagi, Gamarnik, Rees, and Roth (2012)).

These issues are left for future research.
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[37] Sönmez, T., M.U. Ünver, and M.B. Yenmez (2020): “Incentivized kidney exchange,” American Economic Review ,

110, 2198-2224.

[38] Svensson, L-G. (1994): “Queue allocation of indivisible goods,” Social Choice and Welfare, 11, 323-330.

[39] Svensson, L-G. (1999): “Strategy-proof allocation of indivisible goods,” Social Choice and Welfare, 16, 557-567.

[40] Szpilrajn, E. (1930): “Sur l’extension de l’ordre partiel,” Fundamenta Mathematicae, 16, 386-389.

[41] Wako, J. (1991): “Some properties of weak domination in a exchange market with indivisible goods,” The Economic

Studies Quarterly, 42, 303-314.

[42] Xiong, X., X. Wang, and K. He (2022): “A new allocation rule for the housing market problem with ties,” Journal of

Combinatorial Optimization, 43, 98-115.



ON HOUSING MARKETS WITH INDECISIVE AGENTS 21

Appendix A – Proof of Proposition 1

Claim A1. For every preference profile �= (�i)i∈I , we have that Co(�) = SC(�).

Proof. Since SC(�) ⊆ Co(�), given a preference profile �̂ = (�̂i)i∈I ∈ Co(�), we want to prove that �̂ ∈ SC(�).

Let �̂∗i be the strict linear order that is obtained by applying the SC algorithm to �i in the following way (which

considers information about �̂i to take decisions at Step 2):

• Step 1: For every a, b ∈ H such that a �i b, define a �̂∗i b. Let Z(�i) = M(�i).
• Step 2: Given (a, b) ∈ Z(�i),

Step 2.1: Define a �̂∗i b whenever a �̂i b. Apply the following rules:

(1) If there exists c ∈ H such that c �i a and c⊗i b, define c �̂∗i b.
When such c exists, �̂i must also satisfy c �̂i b. Indeed, �̂ ∈ Co(�) ensures that c �̂i a.

Thus, a �̂i b and the transitivity of �̂i guarantees that c �̂i b.
(2) If there exists c ∈ H such that b �i c and a⊗i c, define a �̂∗i c.

When such c exists, �̂i must also satisfy a �̂i c. Indeed, �̂ ∈ Co(�) ensures that b �̂i c.
Thus, a �̂i b and the transitivity of �̂i guarantees that a �̂i c.

Step 2.2: Define b �̂∗i a whenever b �̂i a. Apply the following rules:

(1) If there exists c ∈ H such that c �i b and c⊗i a, define c �̂∗i a.

When such c exists, �̂i must also satisfy c �̂i a. Indeed, �̂ ∈ Co(�) ensures that c �̂i b.
Thus, b �̂i a and the transitivity of �̂i guarantees that c �̂i a.

(2) If there exists c ∈ H such that a �i c and b⊗i c, define b �̂∗i c.
When such c exists, �̂i must also satisfy b �̂i c. Indeed, �̂ ∈ Co(�) ensures that a �̂i c.
Thus, b �̂i a and the transitivity of �̂i guarantees that b �̂i c.

• Step 3: Eliminate from Z(�i) the pairs (hj , hk) ∈ H ×H, with j < k, for which it was defined in the

previous step that either hj �̂i hk or hk �̂i hj .
• Step 4: Repeat Steps 2 and 3 until Z(�i) = ∅.

Since by construction we have that �̂i = �̂∗i for each i ∈ I, it follows that the preference profile �̂ can be

obtained by applying the SC algorithm. �

Claim A2. For every preference profile �= (�i)i∈I , we have that⋂
�̂ ∈ SC(�)

TTC(�̂) ⊆ CS(�) ⊆ C(�) =
⋃

�̂ ∈ SC(�)

TTC(�̂).

Proof. Since TTC(�̂) = K(�̂) for any �̂ ∈ Co(�), it follows from Claim A1 and the definitions of the core and

the strong core that it is sufficient to prove that C(�) is a subset of
⋃
�̂ ∈ SC(�) TTC(�̂).

Let F(C) be the set of agreements among the members of a coalition C. Given �̂ ∈ Co(�) and µ ∈ A, denote

by Ωµ(�̂) the (possible empty) collection of pairs (C, σ) such that, when preferences are given by �̂, the coalition

C blocks the matching µ through the agreement σ ∈ F(C).

Fix µ ∈ C(�). We claim that, for any �̂ ∈ Co(�), if (C, σ) ∈ Ωµ(�̂) then there exists i ∈ C such that

µ(i) ⊗i σ(i). By contradiction, suppose that every i ∈ C can compare the houses µ(i) with σ(i) under (�i)i∈I .
Since (C, σ) ∈ Ωµ(�̂), for all i ∈ C we have that σ(i) �̂i µ(i) or σ(i) = µ(i), and there exists j ∈ C such that

σ(j) �̂j µ(j). Without loss of generality, suppose that there exists m ∈ {1, . . . , n} such that C = {1, . . . ,m} and

for some k ∈ {1, . . . ,m} we have that σ(i) �̂i µ(i), for all i ∈ {1, . . . , k} and σ(i) = µ(i) for all i ∈ {k+ 1, . . . ,m}.
As every agent i ∈ {1, . . . , k} knows how to compare µ(i) with σ(i) under (�i)i∈I , it must be the case that

σ(i) �i µ(i), for all i ∈ {1, . . . , k}.18 Thus, C blocks µ through the agreement σ under �, which contradicts the

fact that µ ∈ C(�).

18Indeed, µ(i) �i σ(i) implies that µ(i) �̂i σ(i), which is a contradiction.
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Let Hµ(i) be the collection of houses that agent i can obtain by participating of a blocking coalition of µ when

preferences are given by some completion of �:

Hµ(i) =
{
h ∈ H : ∃ �̂ ∈ Co(�), ∃ (C, σ) ∈ Ωµ(�̂), i ∈ C, h = σ(i)

}
.

Also, let Qµ(i) be the houses in H(i) that i does not know how to compare with µ(i):

Qµ(i) = {h ∈ H(i) : h⊗i µ(i)}.

Denote by �̂∗ ∈ Co(�) the preference profile such that, for each i ∈ I, µ(i) �̂∗i h for all h ∈ Qµ(i). Notice that

a preference profile �̂∗ with these characteristics always exists. It suffices that, in the Step 2 of the application

of the SC algorithm to �i, the pairs {(µ(i), h) : h ∈ Qµ(i)} are chosen before any other element of M(�i).
We claim that µ ∈ TTC(�̂∗). Since TTC(�̂∗) = K(�̂∗), when µ /∈ TTC(�̂∗) there exists a coalition C and

an agreement σ ∈ F(C) such that (C, σ) ∈ Ωµ(�̂∗). Since µ ∈ C(�), there exists i ∈ C such that σ(i) ∈ Qµ(i).

By the construction of �̂∗i , it follows that µ(i) �̂∗i σ(i). This contradicts the fact that C blocks µ through the

agreement σ under �̂∗. �

Appendix B – A methodology to compute CS(�) from C(�)

Given a housing market [I,H, (�i)i∈I ] and µ ∈ A, let Ii(µ) = {k ∈ I : hk �i µ(i) or hk = µ(i) or hk ⊗i µ(i)}
be the owners of the houses that agent i considers at least as good as µ(i) or incomparable with µ(i). Assuming

that each agent i announces the members of Ii(µ), denote by Sµ the collection of cycles in which someone

announces the owner of a house that she considers strictly better than her assignment under µ.19

It follows from the definition of the strong core that

µ ∈ CS(�) ⇐⇒ [ µ ∈ C(�) and Sµ = ∅ ] .

Furthermore, if Hi = {h ∈ H : @h′ ∈ H, h′ �i h} is the set of houses that agent i considers her best

alternatives, then [
∀i ∈ I : µ(i) ∈ Hi

]
=⇒ µ ∈ CS(�).

Although these criteria are not computationally efficient, they are useful to determine the strong core when

there are few agents in the market.

Example B1. Consider the Shapley-Scarf housing market described in Example 1, in which there are four agents

with preferences characterized by

�1: h2 �1 h3 �1 h1, h4 �1 h3 �1 h1, h2 ⊗1 h4;

�2: h1 �2 h2 �2 h3 �2 h4;

�3: h1 �3 h4 �3 h3 �3 h2;

�4: h2 �4 h4 �4 h1, h2 �4 h3 �4 h1, h3 ⊗4 h4.

In this context, we know that C(�) = {µ1, µ2, µ3} and CS(�) = {µ3}, where

µ1 = [(1, h2), (2, h1), (3, h3), (4, h4)], µ2 = [(1, h2), (2, h1), (3, h4), (4, h3)],

µ3 = [(1, h4), (2, h1), (3, h3), (4, h2)].

The following arguments confirm that µ3 is the only element in the strong core:

• Since I1(µ1) = {2, 4}, I2(µ1) = {1}, I3(µ1) = {1, 3, 4}, and I4(µ1) = {2, 3, 4},

Sµ1 = {(4, 2, 1), (3, 1, 4), (3, 4)}.

• Since I1(µ2) = {2, 4}, I2(µ2) = {1}, I3(µ2) = {1, 4}, and I4(µ2) = {2, 3, 4},

Sµ2 = {(3, 1, 4), (4, 2, 1)}.

• Since I1(µ3) = {2, 4}, I2(µ3) = {1}, I3(µ3) = {1, 3, 4}, and I4(µ3) = {2}, agent 3 is the only one that

could strictly improve her situation, by receiving h1 or h4.

19A cycle is an ordered set {i1, i2, . . . , ik} ⊆ I such that ik = i1 and, for each s ∈ {1, . . . , k − 1}, is announces is+1.
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However, when every agent i announces the members of Ii(µ3) (see figure above), no cycles including

agents {1, 3} or {3, 4} are formed. Thus, Sµ3 is an empty set. �

Example B2. To illustrate the application of our methodology to the housing markets analyzed in Example 4,

consider the scenario in which agents’ preferences are

�1: h3 ⊗1 h1, h2 ⊗1 h1, h2 ⊗1 h3; �2: h1 �2 h2, h3 ⊗2 h2, h1 ⊗2 h3; �3: h1 �3 h3, h2 ⊗3 h3, h1 ⊗3 h2.

Applying the TTC algorithm to the completions of �= (�1,�2,�3), Theorem 1 ensures that the core of this

housing market is given by C(�) = {µ1, µ2, µ3, µ4, µ5, µ6}, where

µ1 = [(1, h1), (2, h2), (3, h3)], µ2 = [(1, h1), (2, h3), (3, h2)], µ3 = [(1, h2), (2, h1), (3, h3)],

µ4 = [(1, h2), (2, h3), (3, h1)], µ5 = [(1, h3), (2, h1), (3, h2)], µ6 = [(1, h3), (2, h2), (3, h1)].

To see that µ1, µ3 and µ6 do not belong to CS(�), notice that:

• Since I1(µ1) = I2(µ1) = I3(µ1) = {1, 2, 3}, we have that Sµ1 = {(2, 1), (2, 1, 3), (3, 1), (3, 1, 2)}.
• Since I1(µ3) = I3(µ3) = {1, 2, 3}, I2(µ3) = {1, 3}, it follows that Sµ3 = {(3, 1)}.
• Since I1(µ6) = I2(µ6) = {1, 2, 3}, I3(µ6) = {1, 2}, we have that Sµ6 = {(2, 1)}.

Since H1 = {h1, h2, h3}, H2 = {h1, h3}, and H3 = {h1, h2}, it follows that CS(�) = {µ2, µ4, µ5}. Indeed, in

any of these allocations each agent receives one of her best alternatives. �

Analogous arguments to those used in Examples B1 and B2 can be applied to compute the strong core of the

other Shapley-Scarf housing markets analyzed in Example 4.

Appendix C – Proof of the claims made in Section 6

Proposition C1. For any preference profile �∈ Pn we have that⋂
�̂ ∈ SC(�)

WIR(�̂) ⊆ EIR(�) ⊆ WIR(�) =
⋃

�̂ ∈ SC(�)

WIR(�̂).

Proof. The definitions of weak efficiency and efficiency imply that EIR(�) ⊆ WIR(�) for all �∈ Pn. Moreover,

if µ /∈ WIR(�), then either µ is weakly inefficient or there exists i ∈ I1 such that hi �i µ(i). Hence, for

all �̂ ∈ Co(�) we have that µ /∈ WIR(�̂). Since Proposition 1 ensures that SC(�) = Co(�), it follows that⋃
�̂∈SC(�) W

IR(�̂) ⊆ WIR(�). Analogously, if µ /∈ EIR(�), then either µ is inefficient or there exists i ∈ I1

such that hi �i µ(i). This implies that there exists �̂ ∈ Co(�) such that µ /∈ WIR(�̂), which guarantees that⋂
�̂∈SC(�) W

IR(�̂) ⊆ EIR(�).

It remains to prove that WIR(�) ⊆
⋃
�̂∈Co(�) W

IR(�̂). Given µ ∈ WIR(�) and �̂ ∈ Co(�), if µ is weakly

inefficient under �̂, then for any σ ∈ A that dominates µ under �̂ there exists an agent i such that µ(i) ⊗i σ(i).20

Let Hµ(i) be the collection of houses that agent i can obtain in the allocations that dominate µ when preferences

are given by some completion of �:

Hµ(i) =
{
h ∈ H : ∃�̂ ∈ Co(�), ∃σ ∈ A, σ dominatesµ and h = σ(i)

}
.

20By contradiction, suppose that σ ∈ A dominates µ under �̂ and that every agent i can compare µ(i) with σ(i) under

�i. Let I′ ⊆ I be the non-empty set of agents for which σ(i) �̂i µ(i). Since �̂ ∈ Co(�) and every agent i knows how to

compare µ(i) with σ(i) under �i, it must be the case that σ(i) �i µ(i) for all i ∈ I′. Therefore, µ is dominated by σ under

�, which contradicts the fact that µ ∈ WIR(�).
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For each i ∈ I1, let Qµ(i) = {h ∈ Hµ(i)∪ {hi} : h⊗i µ(i)} be the houses in Hµ(i)∪ {hi} that i does not know

how to compare with µ(i). Analogously, of each i ∈ I2, define Qµ(i) = {h ∈ Hµ(i) : h⊗i µ(i)}.
Let �̂∗ ∈ Co(�) be the preference profile such that µ(i) �̂∗i h for all i ∈ I and h ∈ Qµ(i).21

The following arguments ensure that µ ∈ WIR(�̂∗):
• If µ is weakly inefficient under �̂∗, then there is σ ∈ A that dominates it. Hence, for some i ∈ I we have

that σ(i) ∈ Qµ(i), which implies that µ(i) �̂∗i σ(i) . This contradicts the fact that µ is dominated by σ.

• If µ is not individually rational under �̂∗, then there is an agent i ∈ I1 such that hi �̂∗i µ(i). Since

�̂∗ ∈ Co(�) and µ ∈ WIR(�), it follows that hi ∈ Qµ(i) and, therefore, µ(i) �̂∗i hi. A contradiction.

We conclude that for any µ ∈ WIR(�) there exists �̂∗ ∈ Co(�) such that µ ∈ WIR(�̂∗). �

Proposition C2. Given an ordering f of agents and g1, . . . , gn ∈ G, the mechanism Φ : Pn → A defined by

Φ(�1, . . . ,�n) = ϕf (g1(�1), . . . , gn(�n)) is weakly efficient, individually rational, and group strategy-proof.

Furthermore, the mechanism Ψ : Rn → A such that Ψ(�1, . . . ,�n) = TC(τ(�1), . . . , τ(�n)) is efficient,

individually rational, and weakly group strategy-proof.

Proof. Since ϕf (�) ⊆ WIR(�) for every �∈ Qn (see Propositions 1 and 2 in Abdulkadiroğlu and Sönmez

(1999)), it follows from Proposition C1 that Φ is weakly efficient and individually rational. Moreover, as ϕf is

group strategy-proof (see Pápai (2000)), to show that Φ is group strategy-proof in Pn it is sufficient to apply

analogous arguments to those made in the proof of Theorem 1.

The mechanism TC can be applied to housing allocation problems where tenants and newcomers coexist

(see Section 3 in Jaramillo and Manjunath (2012)). Moreover, TC is Pareto efficient, individually rational, and

weakly group strategy-proof in the preference domain R̃n (see Proposition 3 in Jaramillo and Manjunath (2012),

Propositions 2 and 3 in Ahmad (2021)). Therefore, since EIR(�) coincides with the set of Pareto efficient and

individually rational allocations of the housing allocation problem with existing tenants and weak preferences

[I1, I2, H, (τ(�i))i∈I1∪I2 ], analogous arguments to those applied in the proof of Theorem 2 guarantee that Ψ is

efficient, individually rational, and weakly group strategy-proof in Rn. �

Proposition C3. For any preference profile �∈ Pn we have that⋂
�̂ ∈ SC(�)

⋃
f∈F

SDf (�̂) ⊆ ES(�) ⊆ W(�) =
⋃

�̂ ∈ SC(�)

⋃
f∈F

SDf (�̂),

where F is the set of orderings of agents.

Proof. For any profile of preferences �∈ Qn, the set of Pareto efficient allocations under � coincides with⋃
f∈F SDf (�) (see Theorems 1 and 2 in Svensson (1994)). Therefore, the result follows from identical arguments

to those made in the proof of Proposition C1 (ignoring the references to individual rationality). �

Proposition C4. Given an ordering f of agents and g1, . . . , gn ∈ G, the mechanism Φ : Pn → A defined

by Φ(�1, . . . ,�n) = SDf (g1(�1), . . . , gn(�n)) is weakly efficient and group strategy-proof. In addition, the

mechanism Ψ : Rn → A such that Ψ(�1, . . . ,�n) = SDf (τ(�1), . . . , τ(�n)) is efficient and strategy-proof.

Proof. It follows from Proposition C3 that Φ is weakly efficient. Since SDf is group strategy-proof in the

preference domain Qn (see Pápai (2000)), to ensure that the mechanism Φ satisfies this property in Pn it is

sufficient to apply analogous arguments to those made in the proof of Theorem 1.

We know that SDf is strategy-proof in R̃n (see Proposition 1 in Svensson (1994)). Also, for each preference

profile �= (�i)i∈I ∈ Rn, the set E(�) coincides with the Pareto efficient allocations of the housing allocation

problem [I,H, (τ(�i))i∈I ]. Therefore, as a consequence of analogous arguments to those applied in the proof of

Theorem 2, we conclude that the mechanism Ψ is efficient and strategy-proof in Rn. �

21A preference profile with these characteristics always exists (see the proof of Claim A2).


