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Abstract

This article concerns the limit properties of the “bi-level matching” estimator introduced by Dı́az, Rau

& Rivera (Forthcoming). Under usual conditions widely employed in the program evaluation literature,

we show the conditional bias of that estimator is O(N�2/k
), with k 2 N the dimension of covariates.
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1 Preliminaries

1.1 Notation and basic concepts

The binary program to be evaluated is represented by a random variable ⌦ = (W,Y,X), where W 2 {0, 1}

indicates whether a treatment was received (W = 1) or not (W = 0) by the individual. The outcome for this

treatment is Y = W Y (1)+(1�W )Y (0) 2 R, with Y (1) and Y (0) the potential outcomes –see Rosenbaum &

Rubin (1983)–, and X is the vector of pretreatment variables or covariates, whose supporting set is X ✓ Rk.

The number k 2 N is the dimension of covariates, which are assumed to be continuous variables.

This paper mainly concerns the limit properties of the population average treatment e↵ect (ATE) of the

program, denoted ⌧ = E(Y (1)� Y (0)).

In the following, for x 2 X and w 2 {0, 1}, the conditional mean and conditional variance of Y is denoted

by µ(x,w) = E(Y | X = x,W = w) and �2(x,w) = V(Y | X = x, W = w), respectively. It is clear that

⌧ = E (µ(x, 1)� µ(x, 0)).

Given ⌦N = {(Wi, Yi, Xi), i = 1, . . . , N} a sample of size N 2 N of ⌦, we denote by N0 and N1 the

number of control and treated units, respectively. We will assume that control units are indexed by 1, ..., N0,

thus the treated ones are labeled by N0 + 1, ..., N0 +N1 (= N).

In this article we use the Euclidean norm, denoted k ·k, as the matching metric, which is not a restrictive

condition for the purposes of this work. We also assume that the matching is performed with replacement,

so each unit could be employed as match more than once.
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By following Abadie & Imbens (2006), for i 2 {1, . . . , N} and m 2 N, 1  m  N1�Wi , we denote by

jm(i) 2

8
<

:
{1, . . . , N0} if Wi = 1,

{N0 + 1, . . . , N} ifWi = 0,

the index of the unit that is the mth nearest neighbour to unit i in terms of covariate values, among the units

having the treatment opposite to that of unit i (namely, the counterfactual set of unit i). The corresponding

matching discrepancy is denoted by

Um,i = Xi �Xjm(i).

The convex hull of the subset1 of covariates of the first m nearest neighbours to unit i is denoted as

Ki(m) = co

�
Xj1(i), . . . , Xjm(i)

 
, while the convex hull of covariates of controls and treated units is denoted,

respectively, by K0 = co{X1, . . . , XN0} and K1 = co{XN0+1, . . . , XN0+N1}. These subsets will play a relevant

role in this work.

1.2 The bi-level matching estimator

The bi-level matching estimator was introduced by Dı́az et al. (Forthcoming). According to this approach,

the vector of weights used to perform the potential outcome imputed to a treated unit i 2 {N0 + 1, . . . , N}

solves the next optimization problem:

Si : min
(�1,...,�N0 )2 argmin{Fi}

N0X

m=1

�m kXi �Xmk

2,

where argmin{Fi} is the solution set of the optimization problem

Fi : min
(⇠1,...,⇠N0 )2�N0

�����Xi �

N0X

m=1

⇠mXm

����� .

After configuring the problems above in terms of covariates to consider the case i is a control unit, the

weighting scheme we are looking for is denoted by

�i = (�i1, . . . ,�
i
N1�Wi

) 2 �N1�Wi
. (1)

Using weights (1), the potential outcome imputed to unit i 2 {1, . . . , N} is

bY b
i (0) = (1�Wi)Yi +Wi

N0X

m=1

�im Ym, bY b
i (1) = WiYi + (1�Wi)

N1X

m=1

�im Ym+N0 ,

thus the bi-level matching estimator for the ATE is given by:

b⌧ b =
1

N

NX

i=1

⇣
bY b
i (1)� bY b

i (0)
⌘
. (2)

1The convex hull of a subset {X1, . . . , Xn} of Rk, denoted co{X1, . . . , Xn}, consists of all the vectors of the form �1X1 +
. . .+ �nXn, with �1 � 0, . . . ,�n � 0, �1 + . . .+ �n = 1. The set of such weights is called the Simplex of Rn, hereafter denoted
by �n.
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Finally, the next auxiliary concepts will be useful later. For i 2 {1, . . . , N}, the value of optimization

problems Fi and Si is given, respectively, by

min{Fi} = Wi

�����Xi �

N0X

m=1

�imXm

�����+ (1�Wi)

�����Xi �

N1X

m=1

�imXN0+m

����� ,

min{Si} = Wi

N0X

m=1

�im kXi �Xmk

2 + (1�Wi)
N1X

m=1

�im kXi �Xm+N0k
2.

1.3 Standing assumptions and some direct consequences

The standing assumption we present below are quite standard in the program evaluation literature. We

refer to Abadie & Imbens (2006), Heckman, Ichimura & Todd (1998), Imbens & Wooldridge (2009) and

Rosenbaum & Rubin (1983) for a detailed discussion on these conditions.

Assumption 1. X is compact and convex, with unitary Lebesgue measure in Rk
.

Assumption 2. The density of X is bounded away from zero, continuos on X and has bounded

partial derivatives at each point of X.

Assumption 3. W ?? ((Y (0), Y (1)) | X).

Assumption 4. There is 0 < c < 1 such that 0 < P(W = 1 | X) < (1� c).

Assumption 5. For N 2 N, (Wi, Xi, Yi), i = 1, . . . , N , are independent draws from the distri-

bution of ⌦.

Assumption 6. For w 2 {0, 1}, µ(·, w) is twice continuously di↵erentiable on X.

Some direct consequences of standing assumptions are presented by claims below. For that, we need to

introduce the following conditional mean of Y , which will be useful later: for x 2 X and w 2 {0, 1}, we set

µw(x) = E(Y | X = x).

Claim 1.1. N0 and N1 tend to infinity (with probability one) when N goes to infinity.

This comes directly from Assumptions 3, 4 and 5.

Claim 1.2. For each x 2 X and w 2 {0, 1}, µw(x) = µ(x,w).

This result is a straightforward consequence of Assumptions 3 and 4 –see Abadie & Imbens (2006)–.

Claim 1.3. For i a treated unit, there are constants L1 and L2 such that

�����

N0X

m=1

�im(µ0(Xi)� µ0(Xm))

�����  L1 min{Fi}+ L2 min{Si}+O

 
N0X

m=1

�imkXi �Xmk

3

!
.

Using Assumptions 1 and 6, and Claim 1.2, this inequality can be readily obtained after some calculus

involving the second order Taylor expansion of µ0. There, constants L1 and L2 are the upper bounds, over

the supporting set, of the first and second derivatives of that mapping. Properly configured in terms of

covariates and the conditional bias mapping, it is clear that a similar inequality than above holds for the

case i is a control unit, this using the same constants as stated.
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Claim 1.4. For integer ↵, there is a constant c↵ > 0 such that for N large enough and m  N1�Wi ,

E
⇣
N

↵/k
1�Wi

kUm,ik
↵
⌘

 c↵ m↵. (3)

This property is one of the key results we need to prove our main contributions, which is a straightforward

consequence of Theorem 5.4 in Evans, Jones & Schmidt (2002).

Theorem 1.1. Evans et al. (2002)

Under Assumptions 1 – 5, for i 2 {1, . . . , N}, ↵ 2 N and 0 < ⇢ < 1/k, there is constant c(↵, k) 2 R+

such that for all N1�Wi large enough and m  N1�Wi ,

E
⇣
N

↵/k
1�Wi

kUm,ik
↵
⌘

= c(↵, k)
�(m+ ↵/k)

�(m)
+O

 
1

N
1/k�⇢
1�Wi

!
.

From relations (5.36) and (5.44) in Evans et al. (2002), we can appreciate that the order expression in

last equation does not depend on m, which implies it can be bounded above by some constant. Given that,

inequality (3) comes from the fact that �(m+ ↵/k)/�(m)  (1 + ↵)↵ m↵.

2 The probability of the convex hull of nearest neighbours

The aim at this part is to obtain a proper upper bound for the probability of Xi does not belong to the

convex hull of covariates of its first M nearest neighbours in the opposite treatment group,

Pr(Xi /2 Ki(M)) = Pr(0k /2 co {U1,i, . . . , UM,i}).

With the aim as stated, following Cover & Efron (1967) we say that a set of random vectors {⇠1, . . . , ⇠M} in

Rk, withM > k, is in general position if, with probability one, every k-elements subset is linearly independent.

From that work (see pag. 218), we have this property holds under the case these vectors are “selected

independently according to a distribution absolutely continuous with respect to natural Lebesgue measure”.

Given that, in view of our standing assumptions, it is clear that the subset of covariates {X1, . . . , XN} is in

general position.2 Moreover, it is also clear that any M -subset of {X1, . . . , XN}, with M > k, is in general

position as well, and that this property remains valid under translation. Next result is straightforward (the

proof is omitted).

Lemma 2.1. Under Assumptions 1 – 5, for N large enough, i 2 {1, . . . , N} and M > k, we have

{U1,i, . . . , UM,i} is in general position.

A remarkable result in Wendel (1962), slightly extended by Cover & Efron (1967), states that if the set

of random vectors {⇠1, . . . , ⇠M} of Rk, with M > k, is in general position, and the joint distribution of them

is invariant under reflections through the origin,3 then the probability of existing a half-space containing

that set of vectors is given by

C(M,k) =
1

2M�1

k�1X

s=0

✓
M � 1

s

◆
. (4)

2In fact, only Assumptions 1, 2, 3 and 5 are needed to obtain this property.
3That is, for any sets A1, . . . , AM in Rk, the probability Pr(�1Z1 2 A1, . . . , �MZM 2 AM ) has the same value for all 2M

choices of �i = ±1, i = 1, . . . ,M .
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By developing the summation in (4), and properly bounding the binomial coe�cient in last relation, it is

easy to show that there is a constant ✓ > 0 such that C(M,k)  ✓ Mk

2M . Now, taking into account the convex

hull of {⇠1, . . . , ⇠M} is the intersection of all half-spaces containing that vectors, using last approximation we

can readily conclude the following inequality:

Pr (0k /2 co{⇠1, . . . , ⇠M})  ✓
Mk

2M
. (5)

Of course this last result cannot be directly applied to approximate Pr(Xi /2 Ki(M)): in spite of

{U1,i, . . . , UM,i} is in general position –Lemma 2.1–, the joint distribution of these vectors could be far from

being invariant under reflections through the origin. However, next technical result helps us to overcome

this drawback (see the proof in §Appendix).

Proposition 2.1. If Assumptions 1 and 2 hold, then the joint distribution of the first M matching discrep-

ancies can be bounded above by a strictly positive mapping, which properly re-scaled by a constant yields a

distribution function that is invariant under reflections through the origin.

Finally, combining Proposition 2.1, Lemma 2.1 and inequality in (5), we can readily conclude the following

property.

Theorem 2.1. Under Assumptions 1 – 5, for N large enough, i 2 {1, . . . , N} and M > k, there is constant

� > 0 such that

Pr(Xi /2 Ki(M))  �
Mk

2M
.

3 Large sample properties

Following Abadie & Imbens (2006), and performing some simple calculus, it can be readily shown the

conditional bias of the bi-level matching estimator, denoted Bb
N , is given by the following expression:

Bb
N =

1

N

 
N0X

i=1

N1X

m=1

�im(µ1(Xm+N0)� µ1(Xi)) +
N1+N0X

i=1+N0

N0X

m=1

�im(µ0(Xi)� µ0(Xm))

!
. (6)

Next property is one the main results of this paper. The proof is given in §Appendix.

Proposition 3.1. If Assumptions 1 – 6 hold, then

E
 �����

N0X

m=1

�im(µ0(Xi)� µ0(Xm))

�����

���Wi = 1, Xi, {Wj , Xj}
N
j=1

!
= O

⇣
N

�2/k
0

⌘
. (7)

and

E
 �����

N1X

m=1

�im(µ1(Xm+N0)� µ1(Xi))

�����

���Wi = 0, Xi, {Wj , Xj}
N
j=1

!
= O

⇣
N

�2/k
1

⌘
. (8)

Using Proposition 3.1, next result is straightforward.

Theorem 3.1. If Assumptions 1 – 6 hold, then

Bb
N = Op(N

�2/k).
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Proof. After developing characterization in (6), we have

E
⇣
N2/k

|Bb
N |

⌘
 E

 
N2/k

N

N0X

i=1

E
 �����

N1X

m=1

�im (µ1(Xm+N0)� µ1(Xi))

�����

����Xi, {Wj , Xj}
N
j=1

!!
+

E
 
N2/k

N

NX

i=N0+1

E
 �����

N0X

m=1

�im(µ0(Xi)� µ0(Xm))

�����

����Xi, {Wj , Xj}
N
j=1

!!
.

From Proposition 3.1, there is a constant  such that

E
⇣
N2/k

|Bb
N |

⌘
  E

 
N2/k

N

 
N0

N
2/k
1

+
N1

N
2/k
0

!!
=  E

 ✓
N

N1

◆2/k ✓
N0

N

◆
+

✓
N

N0

◆2/k ✓
N1

N

◆!
.

Using the well known Cherno↵’s and Markov’s inequalities in last relation, we can readily conclude the

proof.

4 Appendix

4.1 Proof of Proposition 2.1

Proof. Following Abadie & Imbens (2006), from a sample of {Xj}
N
j=1 ⇢ Rk, we have the probability that

Xi = x is the mth closest match of z is given by

fjm(x) = N

✓
N � 1

m� 1

◆
f(x) (1�Pr (||X � z||  ||x� z||))N�m (Pr (||X � z||  ||x� z||))m�1

,

where f(·) is the density function of covariates. Denoting F (x) = Pr(||X � z||  ||x� z||), the conditional

distribution of Xs = x̃ being the rth closest match of z, given that Xjm = x for r > m, is the same as the

distribution of the (r � m)th closest match of z obtained from a sample of size N � m from a population

whose distribution is simply F (·) truncated on the left at x, this last given by the following expression:

f jm
jr

(x̃ |x) =
fjm,jr (x, x̃)

fjm(x)

= (N �m)

✓
N �m� 1

r �m� 1

◆
f(x̃)

(1� F (x))

✓
F (x̃)� F (x)

1� F (x)

◆r�m�1✓1� F (x̃)

1� F (x)

◆N�r

.

Thus, the joint distribution of probability that Xi = x and Xs = x̃ are the mth and rth (r > m) nearest

neighbors of z respectively is:

fjm,jr (x, x̃) =
N !

(m� 1)!(r �m� 1)!(N � r)!
f(x)f(x̃) (F (x̃)� F (x))r�m�1 (1� F (x̃))N�r

.

Given this, by following the above arguments and performing some calculus, denoting x = (xj1 , . . . , xjM ) we
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can show the joint distribution of the first M closest matches is:

fj1,...,jM (x) =
N !

(N �M)!

 
MY

s=1

f(xjs)

!
(1� F (xjM ))N�M

,

which after transforming to the matching discrepancy, Um = Xjm � z, and denoting u = (uj1 , . . . , ujM ), we

can conclude the following relation:

fj1,...,jM (u) =
N !

(N �M)!

 
MY

s=1

f(z + ujs)

!
(1�Pr(||X � z||  ||ujM ||))N�M

.

Finally, denoting Vm = N1/kUm, and v = (vj1 , . . . , vjM ), we have that

fj1,...,jM (v) =
N !N�M

(N �M)!

 
MY

s=1

f
⇣
z +

vjs
N1/k

⌘!✓
1�Pr

✓
||X � z|| 

||vjM ||

N1/k

◆◆N�M

, (9)

from which we can readily conclude the following inequality4

fj1,...,jM (v)  f̄Mexp

✓
�f
¯

||vjM ||

k

(M + 1)

⇡k/2

�(1 + k/2)

◆
, (10)

where 0 < f
¯
< f̄ < 1 are the lower and upper bounds of the distribution f(·), respectively. Using the right

term in (10) we can define the distribution as stated.

Remark 4.1. Using (9) it can be shown that the joint distribution of the first M nearest neighbors converges

to the following distribution, which indeed is invariant under reflections through the origin:

lim
N!1

fj1,...,jM (v) = f(z)Mexp

✓
�||vjM ||

k f(z)
⇡k/2

�(1 + k/2)

◆
.

4.2 Proof of Proposition 3.1

Proof. Without loss of generality, the proof is done for relation in (7). For a treated unit i 2 {N0+1, . . . , N0+

N1} and M  N0, we set

qi(M) = Pr(Xi /2 Ki(M)), pi(M) = 1� qi(M) = Pr(Xi 2 Ki(M)),

and the conditionals in (7) is denoted as ✓i = {Wi = 1, Xi, {Wj , Xj}
N
j=1}.

The proof begins with the study of the stochastic order of the following part of the approximation in

Claim 1.3:

 i = E
⇣
L1 min{Fi}+ L2 min{Si}

��� ✓i
⌘
= E

⇣
 i

���Xi /2 K0

⌘
qi(N0) + E

⇣
 i

���Xi 2 K0

⌘
pi(N0).

Denoting by � > 0 the diameter of X, Theorem 2.1 implies

E
⇣
 i

���Xi /2 K0

⌘
qi(N0) 

�
L1 � + L2 (k + 1) �2

�
�
Nk

0

2N0
,

4Here we use the fact that for N > M , N�M
N � 1

M+1 .
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this leading to the following result:

E
⇣
N

2/k
0  i

���Xi /2 K0

⌘
qi(N0) = o(1). (11)

Because min{Fi} = 0 when Xi 2 K0, it follows that

E
⇣
 i

���Xi 2 K0

⌘
= E

⇣
L2 min{Si}

��� ✓i, Xi 2 K0

⌘
,

and then, decomposing the event Xi 2 K0 into the disjoint events5

Xi 2 �Ki(m) = Ki(m) \ Ki(m� 1), m = 2, . . . , N0,

each having probability pi(m)qi(m� 1) ( qi(m� 1)), we can conclude

E
⇣
 i

���Xi 2 K0

⌘
pi(N0) 

N0X

m=2

E
⇣
L2 min{Si}

��� ✓i, Xi 2 �Ki(m)
⌘
qi(m� 1). (12)

For m  N0, it is clear the condition Xi 2 �Ki(m) implies min{Si}  kUm,ik
2. On the other hand,

when m > k, Theorem 2.1 implies qi(m � 1)  � mk

2m . Using all of these facts in (12) gives the following

inequality:

E
⇣
 i

���Xi 2 K0

⌘
pi(N0) 

kX

m=2

E
�
L2 kUm,ik

2
| ✓i, Xi 2 �Ki(m)

�
+

N0X

m=k+1

E
�
L2 kUm,ik

2
| ✓i, Xi 2 �Ki(m)

�
2�

mk

2m
.

Applying Claim 1.4 to last inequality implies that –there constant c2 comes from (3)–

E
⇣
 i

���Xi 2 K0

⌘
pi(N0) 

c2 L2

N
2/k
0

 
kX

m=2

m2 + 2 �
N0X

m=k+1

m2+k

2m

!
. (13)

Finally, because both summations in the right side of (13) are uniformly bounded, there is a constant

C > 0 such that

E
⇣
 i

���Xi 2 K0

⌘
pi(N0) 

C

N
2/k
0

,

which along with (11) lead us to conclude that

E
⇣
L1 min{Fi}+ L2 min{Si}

���Wi = 1, Xi, {Wj , Xj}
N
j=1

⌘
= O

⇣
N

�2/k
0

⌘
.

Using similar arguments as before, it is straightforward to show the order term of the approximation in

Claim 1.3 is also O
⇣
N

�2/k
0

⌘
, which ends the proof.

5In the following, the set-di↵erence between A and B is denoted by A \B = {c 2 A, c /2 B}.
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