
 

Climate Change and Natural 
Disasters 

 
Autores: 

Ramón E. López 

Vinod Thomas 

Pablo Troncoso 

Santiago, Diciembre de 2015 

SDT 414 



|1 
 

November 30, 2015  

 
 
 
 
 
 
 
 
Climate Change and Natural Disasters  

Ramón E. López, Vinod Thomas and Pablo Troncoso 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Ramón E. López is Professor at the Department of Economics, University of Chile. Vinod 
Thomas is Director-General of Independent Evaluation, Asian Development Bank.  Pablo 
Troncoso is a lecturer at University of Chile. Financial support for this research was provided 
by The Asian Development Bank. 
 

 



Climate Change and Natural Disasters (Draft: 1-Dec-15)  

|2 
 

CONTENTS 

 
 
ABSTRACT 
 

I. INTRODUCTION 

 

II. RISING TRENDS AND THEIR CHARACTERISTICS 

 

A. Anthropogenic Link to Climate-Related Hazards 

B. Population Exposure and Socioeconomic Vulnerability 

C. Climate–Disaster Link 

 

III. ECONOMETRIC ANALYSIS 

 

A. Data and Econometric Methodology 

B. Regression Results on Global Disaster Risk Factors 

C. Role of Atmospheric CO2 Level on Climate-Related Natural Disasters 

 

IV. CONCLUSIONS 

APPENDIXES 

REFERENCES 

 

 

 

  



Climate Change and Natural Disasters (Draft: 1-Dec-15)  

|3 
 

ABSTRACT 

 

 
Intense climate-related disasters—floods, storms, droughts, and heat 
waves—have been on the rise worldwide. At the same time and coupled with 
an increasing concentration of greenhouse gases in the atmosphere, 
temperatures, on average, have been rising, and are becoming more variable 
and more extreme. Rainfall has also been more variable and more extreme.   
 
Is there an ominous link between the global increase of these 
hydrometeorological and climatological events on the one side and 
anthropogenic climate change on the other? This paper considers three main 
disaster risk factors—rising population exposure, greater population 
vulnerability, and increasing climate-related hazards—behind the increased 
frequency of intense climate-related natural disasters. 
 
In a regression analysis within a model of disaster risk determination for 
1971–2013, population exposure measured by population density and 
people’s vulnerability measured by socioeconomic variables are positively 
linked to the frequency of these intense disasters.  Importantly, the results 
show that precipitation deviations are positively related to 
hydrometeorological events, while temperature and precipitation deviations 
have a negative association with climatological events.  Moreover, global 
climate change indicators show positive and highly significant effects.   
 
Along with the scientific association between greenhouse gases and the 
changes in the climate, the findings in this paper suggest a connection 
between the increasing number of natural disasters and man-made 
emissions of greenhouse gases in the atmosphere. The implication is that 
climate mitigation and climate adaptation should form part of actions for 
disaster risk reduction.  
 
 
 
Keywords: Climate, Natural Disasters, Climate-Hazards, Sustainable 

Development, Government Policy 
 
JEL classification: Q54, Q56, Q58, C22 
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I. INTRODUCTION 

 
The first half of this decade will be ostensibly be remembered for deadly climate-related 
disasters; among them, the great floods in Thailand in 2011, Hurricane Sandy in the United 
States in 2012, and Typhoon Haiyan in the Philippines in 2013.  The year 2014 was the 
Earth’s warmest in 134 years of recorded history (NASA GISS 2015). It is 
hydrometeorological (floods, storms, heat waves) and climatological disasters (droughts, 
wildfires) rather than geophysical ones (earthquakes, volcanic eruptions) that are on the rise.  
 
The global increase in intense floods, storms, droughts, and heat waves has a likely and 
ominous link to climate change. There is a growing literature on the evidence linking 
anthropogenic climate change with natural disasters. 1  Drawing attention to these climate-
related disasters, arguably the most tangible manifestation of global warming, could help 
mobilize broader climate action. And it could influence the directions taken for economic 
growth worldwide and pave the way to a much-needed switch to a path of low-carbon, green 
growth.   

In the last four decades, the frequency of natural disasters recorded in the Emergency 
Events Database (EM-DAT) has increased almost three-fold, from over 1,300 events in 
1975–1984 to over 3,900 in 2005–2014 (Figure 1). The number of hydrological and 
meteorological events increased sharply during this period, with the annual number of 
Category 5 storms tripling between 1980 and 2008 (IED 2013).2  Although the causal 
relationship between climate change and natural disasters is not fully understood, we are still 
faced with the fact that the frequency of climate-related natural disasters is rising.  

Figure 1. Global Frequency of Natural Disasters by Type (1970–2014) 

 
 

Source: Authors’ estimates based on data from the Emergency Event Database of the Centre for 
Research on the Epidemiology of Disasters. http://www.emdat.be (accessed 5 March 2015). 

 

                                                           
1 See Thomas et al. (2013) for a more detailed discussion of the related literature.  
2 Category 5 storms are the most severe and refer to hurricanes with maximum sustained wind speeds 

exceeding 249 km/h. 
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Since 2000, over 1 million people worldwide have died from natural disasters, with the cost 
of damage estimated at over $1.7 trillion (Guha-Sapir, Below and Hoyois 2015). However, 
clear trends should not be expected in natural disaster impacts. One extreme weather event 
like Category 5 Hurricane Sandy will muddle trends and break existing records for damages.  

From 1970 to 2008, over 95% of deaths from natural disasters occurred in developing 
countries (IPCC 2012). In the decade 2000–2009, a third of global natural disasters and 
almost 80% of deaths occurred in the 40 countries that received the most humanitarian aid 
(Kellet and Sparks 2012).   

The number of people affected by natural disasters has also been increasing. This is 
particularly true for hydrological disasters. Before the 1990s, 5-year averages did not reach 
50 million people. This figure doubled after the 1990s, and was mostly over 100 million until 
2014 (Figure 2).   

Figure 2.  People Affected by Natural Disasters: Global Trends (1970–2014) 

 
 

Note: The number of people affected is based on a 5-year moving average.  
 
Source: EM-DAT Database.  

 

Global damage from natural disasters has been steadily increasing, reaching about $142 
billion annually in the last 10-year period (2005–2014), a steep increase from $36 billion a 
year two decades ago (1985–1994) (Guha-Sapir, Below and Hoyois 2015).  

Without adaptive measures, disaster damages are expected to rise to $185 billion a year 
from economic and population growth alone (World Bank and United Nations 2010). 
Probabilistic risk models estimate that the global average annual loss from earthquakes, 
tsunamis, cyclones, and flooding are now $314 billion (UNISDR 2015). These estimates 
would be even higher if climate change and urbanization were incorporated.  

This study explores whether there is a significant relationship between climate change and 
the global increase in the frequency of intense natural disasters. As in Thomas et al. (2013), 
this paper considers the three main disaster risk factors—rising population exposure, greater 
population vulnerability, and increasing climate-related hazards—behind the global increase 
in frequency of intense natural hazards.  
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One important difference from previous work is that our empirical analysis is done in a global 
context covering 157 countries. Our empirical estimation also controls for two-way fixed 
effects which allows estimation of common-to-all global effects (over time) in addition to 
effects that are particular to a country.  Controlling for global time effects is very important as 
climate phenomena in a country may be a response to global and regional climate changes 
on top of local temperature and precipitation changes. In addition, our analysis is extended 
to determine whether a relationship exists between global climate change indicators—
accumulated  stocks of atmospheric CO2 and average sea temperature—and the number of 
global natural disasters.  

Section II presents the trends and characteristics of natural disaster risk factors and is based 
on the Intergovernmental Panel on Climate Change (IPCC) disaster risk framework. It also 
establishes the analytic framework, which is built on the idea that natural disaster risk is 
influenced by hazards, people’s exposure to those hazards, and people’s vulnerability to 
their effects. Section III discusses the empirical framework and examines how the risk of 
intense climate-related disasters may be related to demographic and socioeconomic factors, 
climate anomalies, and global climate change indicators. It notes the significance of global 
effects over and above local country effects and finds that these effects have become worse 
throughout the time period considered. The final section presents conclusions. 

II. RISING TRENDS AND THEIR CHARACTERISTICS 

 

The IPCC (2014a) disaster risk framework sets out three linkages involving climate-related 
disasters. First, greenhouse gas (GHG) emissions alter atmospheric GHG concentrations 
and thus affect climate variables, specifically temperature and precipitation (IPCC 2007). 
Second, changes in the climate variables affect the frequency of climate-related hazards 
(IPCC 2012). Third, the frequency of climate-related hazards affects the risk of natural 
disasters (IPCC 2012, Stott et al. 2012).  

Climate-related disaster risk is defined as the expected value of losses, often represented as 
the likelihood of occurrence of hazardous events multiplied by the impacts (effects on lives, 
livelihoods, health, ecosystems, economies, societies, cultures, services, and infrastructure), 
if these events occur.  Disaster risks result from the interaction of three elements: (i) the 
hazard itself; (ii) the population exposed to the hazard (exposure); and (iii) the community’s 
ability to withstand its impact (vulnerability) (Peduzzi et al. 2009, Thomas et al. 2013). 

The anatomy of risks reveals the natural variability of hazards and also the various entry 
points, approaches, and considerations in managing climate-related disaster risks. Collective 
decisions and actions to reduce GHG emissions can slow anthropogenic climate change and 
its impacts.  Individual and collective decisions and actions of people and societies also 
influence vulnerability and exposure. 

A. Anthropogenic Link to Climate-Related Hazards 

Since Fourier in 1824 and Tyndall in 1864, scientists have been studying the extent to which 
human-induced GHG emissions cause changes in the climate. While some argue that the 
effects of the dynamic interplay of all the underlying climate change variables are difficult to 
model and predict, the evidence is that the rise in global average surface temperature from 
1951 to 2010 was caused by the anthropogenic increase in GHG concentrations (IPCC 
2013).  

The Intergovernmental Panel on Climate Change (2014b) confirms the Earth’s warming 
atmosphere and oceans, diminishing snow and ice, and rising sea levels, among other 
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changes The three decades starting from 1983 were likely the warmest period in the last 
1,400 years in the northern hemisphere. Greenland and the Antarctic ice sheets have been 
losing mass and, worldwide, glaciers are shrinking (IPCC 2013).  

There is also a consensus in the published research. Of the more than 10,000 published 
research studies on climate from 1991 to 2011, 97% of the studies that express a position on 
anthropogenic global warming endorse it (Cook et al. 2013). In another study of 928 
abstracts in refereed journals from 1993 to 2003, none of the evaluated papers disagreed 
that human-induced climate change had taken place (Oreskes 2004).     

Greenhouse Gas Concentrations and Global Warming 

Warming of the atmosphere and the ocean, changes in the global water cycle, reductions in 
snow and ice, the rising global mean sea level, and changes in some climate extremes are 
already being observed as GHG concentrations in the atmosphere continue to rise.  

Humans are emitting GHGs into the Earth’s atmosphere at a substantial and increasing 
rate—currently over 30 billion tons of carbon dioxide (CO2) a year, along with a range of 
other GHGs such as methane (CH4) and nitrous oxide (NO2) (US EPA 2014). As a result of 
these emissions, GHG concentrations in the atmosphere have also been rising consistently, 
as have global surface temperatures (Figure 3).  

Figure 3. CO2 Atmospheric Concentrations at Mauna Loa and Global Annual 

Temperature Anomaly (1959–2014) 

 

 
Notes: ppm = parts per million. The carbon dioxide data measured in ppm on Mauna Loa, a volcano in 
Hawaii, constitute the longest record of direct measurements of carbon dioxide in the atmosphere. Global 
annual mean surface air temperature change, in degrees Celsius, base period 1951–1980. 
 
Sources: NASA GISS (2015), Tans (2015), and Keeling (2015). 

 

Scientists consider 450 parts per million (ppm) to be the threshold above which it will be 
difficult, if not impossible, to limit a temperature increase to 2°C relative to 1850–1900 levels. 
However, atmospheric CO2 concentrations have already surpassed 400 ppm for three 
successive months in 2014. The first five months of 2015 averaged 401 ppm CO2. If CO2 

concentrations continue to increase at a little over 2 ppm annually, as they did during 2005–
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2014 (Tans 2015, Keeling 2015), the planet will exceed the 450 ppm mark in a quarter of a 
century. Moreover, temperature increases of 2°C above 1850–1900 levels could lead to 
dangerous feedback effects, such as the collapse of the Amazon ecology or thawing of 
permafrost (Stern 2013a). A large fraction of the anthropogenic climate change resulting 
from CO2 emissions and ice sheet mass loss is irreversible on a multi-century to millennial 
time scale (IPCC 2013).  

Increased concentrations of GHGs in the atmosphere are expected to trap more heat on 
Earth and to lead to a gradual increase in global average temperatures. Land and ocean 
temperature data show a 0.85 °C increase over 1880–2012—a warming that is extremely 
likely due to human influence, particularly anthropogenic GHG emissions. The 10 hottest 
years on record since 1880 all occurred after 1997, topped by 2014 (NOAA National Climatic 
Data Center 2015). For the 38th consecutive year, average annual temperatures are above 
the long-term average.   

Detection and attribution analysis suggests that increases in global mean surface 
temperature were extremely likely to have been caused by anthropogenic GHG emissions. 
Several studies have identified and have sought to separate the different sources of global 
mean surface temperature variability (Figure 4) (IPCC 2013).  

Figure 4. Contributions to Global Mean Temperature Change (1890–2010) 

 

 
AMO = Atlantic Multi-decadal Oscillation; ENSO= El Niño-Southern Oscillation  
 
Source: IPCC (2013) 
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Internal variability brought about by the Atlantic Multi-decadal Oscillation and the El Niño-
Southern Oscillation have been found to be too small to have contributed to the relatively 
large observed warming since 1950. Similarly, the contribution of solar variability has been 
minimal and cannot have caused the rising temperatures. While several factors have 
contributed to the yearly and decadal variability of global mean surface temperatures, 
studies have consistently attributed most of the warming over the past 50 years to 
anthropogenic influence. 

Global Warming and Climatic Events 

Detailed studies of the 2003 European heat wave and the wintertime droughts in the 
Mediterranean region (1902-2010) confirm that human-induced climate change played a role 
in magnifying the likelihood of these hazards occurring (Stott, Stone and Allen 2004, 
Hoerling et al. 2012). The global record high temperature of 2014, driven by human 
activities, exacerbated the California 2012–2014 drought by 36%, making it the worst 
recorded drought in the past 1,200 years (Nuccitelli 2014).3 

Human-induced climate change has also been linked to the increase in heat waves 
(Coumou and Rahmstorf 2012). There is evidence to conclude with 80% probability that the 
2010 Moscow heat waves that killed 11,000 people would not have occurred without human-
induced climate warming (Rahmstorf and Coumou 2011).   

Evidence of anthropogenic GHG emissions contributing to the observed intensification of 
precipitation events was found in two-thirds of the northern hemisphere regions (Min et al. 
2011). Atmospheric thermodynamics explain that the moisture-holding capacity of the 
atmosphere is largely influenced by temperature and pressure, and that warmer 
atmospheres have larger saturation vapor content. The median intensity of extreme 
precipitation increases with near-surface temperature at a rate of 5.9%–7.7% per degree 
(Westra, Alexander and Zwiers 2013). This could reach as high as 14% per degree when 
daily mean temperatures exceed 12° C. Even precipitation extremes that last for a short time 
can cause local flooding, erosion, and water damage (Lenderink and van Meijgaard 2008).  

Climate change models indicate that the risk of floods occurring in England and Wales in 
autumn 2000 was higher by at least 20% due to 20-century anthropogenic GHG emissions 
(Pall et al. 2011). Case studies on three catchment regions in southeastern Australia show 
that a doubling of CO2 levels would increase the frequency and magnitude of flood events 
with significant building damage (Schreider, Smith and Jakeman 2000). Records from 
Japan’s automated meteorological stations situated all over the country show that the 
number of precipitation events exceeding 50 millimeters per hour and 80 millimeters per 
hour increased from the 1970s to 2013 (Japan Meteorological Agency 2014). 

Dry areas are generally becoming drier and wet areas becoming wetter. With warming, more 
precipitation falls as rain instead of snow and snow melts earlier, further increasing the risk 
of runoff and flooding (Trenberth 2011).  

Studies predict that a doubling of atmospheric CO2 concentrations will triple the number of 
Category 5 storms (Anderson and Bausch 2006); and that for every 1°C rise in global 
temperature the frequency of events of the magnitude of Hurricane Katrina will increase by 
at least two times, and possibly by as much as seven times (Grinsted, Moore and Jevrejeva 
2013). Climate models project a 3% to 5% increase in wind speed per degree Celsius 
increase in tropical sea surface temperatures (WMO 2006), while some projections indicate 

                                                           
3 Reconstructing drought conditions, the study finds that the 2014 California drought was the most severe 

drought in the past 1,200 years based on the Palmer Drought Severity Index, which estimates soil moisture.  
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that the intensity of tropical cyclones4 will increase by 2%–11% by 2100 (Knutson et al. 
2010). With climate change, global losses from hurricanes may double (Hallegatte 2012). 

Since the 1970s, the potential destructiveness of hurricanes has increased considerably and 
this has been shown to be highly correlated with tropical sea surface temperature. With 
storm lifetimes and intensities increasing by at least 50%, hurricane power dissipation has 
more than doubled in the Atlantic and increased by 75% in the Pacific (Emanuel 2005). 

The rise in sea surface temperatures is the "main determinant of the strength of storms, the 
total column water vapor and the convective available potential energy” (Trenberth 2005). 
Hurricane Sandy—the deadliest and most destructive hurricane of the 2012 Atlantic 
hurricane season—was fueled by unusually warm ocean waters. Sandy produced storm 
surges almost 6 meters high, resulting in massive flooding that shut down the Port of New 
York and New Jersey for five days (Sturgis, Smythe and Tucci 2014).  

Typhoon Haiyan which hit the Philippines in November 2013 formed when the sea surface 
temperature of the Pacific Warm Pool Region was at its highest (based on records since 
1981). The sea surface temperature of the West Pacific Region was also elevated. The main 
trepidation, however, concerns the significant and positive increasing trend of 0.2°C per 
decade of the sea surface temperatures of both regions, given the correlation between sea 
surface temperatures and maximum winds of typhoons (Comiso, Perez and Stock 2015).  

From 1975 to 2004, global hurricane data reveal that Category 4 and 5 hurricanes have 
almost doubled in number, from 50 every 5 years in the 1970s, to almost 90 every 5 years in 
the 2000s (Webster et al. 2005). The number of the weakest storms (Category 1) decreased 
over this period.  

Global warming is also projected to increase sea levels (NOAA AOML 2015). As the sea 
level rises, the potential for storm surges to move further inland increases. A coastal storm 
surge drives large volumes of water ashore at high speed and with immense force.  

The El Niño-Southern Oscillation will remain the dominant mode of yearly variability in the 
tropical Pacific, with global effects (IPCC 2013). But a consensus is emerging that the overall 
frequency of various extreme events will continue to rise due to anthropogenic global 
warming. The convergence of anthropogenic factors and natural variability in extreme events 
could be catastrophic. For instance, the increase in moisture availability is likely to intensify 
El Niño-related regional precipitation variability.    

B. Population Exposure and Vulnerability 

Exposure is the presence of people, livelihoods, ecosystems, environmental services, 
resources, infrastructure, and economic, social, and cultural assets in places and settings 
that could be adversely affected by natural hazards.    

People living along cyclone tracks and near the coasts of cyclone basins expect these yearly 
events. Similarly, people living in low-lying coastal areas and floodplains susceptible to 

                                                           
4 Tropical cyclones are areas of low atmospheric pressure over tropical and subtropical waters with a huge, 

circulating mass of wind with speeds of at least 119 kilometers per hour, and thunderstorms with spans of 
hundreds of kilometers. Aside from destructive winds, tropical cyclones can bring torrential rain, storm surges, 
and tornadoes that can ruin population centers, agricultural land, and metropolises. About 80 tropical cyclones 
form every year from seven tropical cyclone basins: Atlantic, Northeast Pacific, Northwest Pacific, North Indian, 
Southwest Indian, Southeast Indian, and Southwest Pacific (NOAA AOML 2015). 

.  
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monsoon flooding are used to heavy seasonal rains. But more people and industries are 
now settling in these hazard-prone areas, putting themselves in harm’s way.  

Clearly, a climate-related hazard is unlikely to create a disaster if it strikes where there are 
no communities or economic activity. So an intense storm in a sparsely populated area will 
pose less risk than a moderate storm in a densely populated city.   

While there is no homogenized dataset of global tropical cyclone landfalls, there is evidence 
that the increasing economic damage from tropical cyclones in recent years may be 
explained by the increasing wealth in locations prone to these cyclones, rather than by the 
increasing frequency or intensity of cyclones (Weinkle, Maue and Pielke 2012). Some 
suggest that, even without human-induced climate change, tropical cyclone losses and 
damage may double just because of increasing incomes (Mendelsohn et al. 2012).  

Data from the reinsurance industry suggest that societal change—population and wealth—is 
sufficient to explain increasing disaster losses (Mohleji and Pielke 2014). An analysis of 22 
disaster-loss studies suggests that if increases in population and capital were included in the 
disaster-loss equations, no loss trends can be attributed to human-induced climate change 
(Bouwer 2011). Some argue this may be especially true for rising urban centers with their 
increasing populations and the infrastructure buildup (The Economist 2012). Others suggest 
there are no significant trends in disaster loss and damage (Okuyama and Sahin 2009, 
Neumayer and Barthel 2010), as shown in hurricane losses and damages in the United 
States from 1900 to 2005 (Pielke et al. 2008).  

Clearly, exposure is a big factor in disasters. Strong economic considerations drive that 
exposure. Communities and industries are built in flood-prone coastal areas because of the 
economic opportunities and services these areas provide, such as harbors and ports, 
livelihoods, and transportation. The infrastructure and market access of these areas offer 
comparative advantages which become more persuasive as economies become more 
global. An example of this is the number of megacities in regions at risk of flooding—
particularly Dhaka, Kolkata, Manila, Mumbai, and Shanghai—suggesting people are making 
an economic judgment to establish lives and businesses in these areas despite the inherent 
risks.  

With these megacities becoming national and regional growth centers, agglomeration 
economies set in, further increasing investments, in-migration, and population density. A 
continuing rise in human and economic exposure in high-risk megacities cannot be 
discounted. By 2030, Shanghai’s current 23 million population is expected to rise to 31 
million, and it is estimated that Dhaka will add another 10 million to its present 17 million 
population (UN DESA 2014). Understanding the economic decisions that have led to this 
situation—of more people living in harm’s way—is necessary if the exposure dimensions of 
risks are to be managed.  

Not all people and assets will be affected by hazards such as flooding and cyclones in the 
same way. Differences in physical, behavioral, and economic characteristics influence the 
propensity of people and assets to be harmed, and the lack of capacity to cope and adapt. A 
multidimensional concept, vulnerability to climate change, is a function of non-climatic 
determinants such as wealth and other demographic and socioeconomic factors (Füssel and 
Klein 2006).  

There are opposing forces affecting people’s vulnerability. On the one hand, environmental 
degradation has rendered many locations increasingly vulnerable to floods and storms. On 
the other, there has been progress in disaster risk management. With more accurate 
forecasting, improved early warning systems, and better evacuation procedures in place, 
fatalities from such events have fallen, despite their rising occurrence and damages.  
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The success of Bangladesh’s cyclone warning system is a good example. After Cyclone 
Bhola, with wind speeds of 200 kilometers per hour, killed over 500,000 people in 1970, 
Bangladesh invested $10 billion on cyclone readiness. With the country equipped with early 
warning systems, disaster-resilient shelters, and embankment protection, Cyclone Sidr in 
2007, with wind speeds of 250 kilometers per hour, led to a much lower death toll of 10,000 
(Thorlund and Potutan 2015). 

Vulnerability, like exposure, is also influenced by socioeconomic factors. The exposure–
vulnerability links are quite strong, and both can either act independently or simultaneously, 
often creating synergies or even creating a cycle of increasing or decreasing risk.  

Natural hazards are income-blind, affecting both developed and developing countries. But 
poorer economies are hit harder. Studies have shown how fatality rates and economic 
impact, and losses as a proportion of gross domestic product (GDP), are higher in 
developing countries (IPCC 2012) because of the higher share of impoverished populations 
in vulnerable urban zones, weak infrastructure, lack of basic facilities, and limited 
government capacity.  

Poorer economies are more vulnerable because a higher share of their populations lives in 
marginalized urban areas with poor infrastructure. Weak government capacity and lack of 
basic facilities also increase susceptibility to disasters. Flash floods commonly cause more 
fatalities in poorer communities than in more affluent areas. Poorer segments of the 
population with scant resources often end up in the higher risk peripheral areas, and have 
less well built homes. When disaster strikes, the poor are often left with even less resources. 
And when livelihoods are affected, losses are further amplified, leaving people even more 
vulnerable.  

This was vividly demonstrated in 2013 by Typhoon Haiyan, which struck the eastern 
Visayas, one of the poorest regions of the Philippines. Here, four out of every 10 families are 
poor (PSA 2013). While damage from natural disasters in that year cost the country roughly 
0.9% of its national product, Haiyan-related losses amounted to 17.4% of regional product in 
the eastern Visayas (NEDA 2013). With very little coping capacity, many Haiyan victims are 
still living in tents some 18 months after the disaster. 

Evidence also shows that higher educational attainment and literacy are associated with 
better disaster management and adaptive capacity (Brooks, Adger and Kelly 2005, Toya and 
Skidmore 2007). 

Gender is also relevant. In the case of the 2004 Asian tsunami, there were more female 
deaths than males. Across age groups, children below 10 years and adults above 40 years 
are found to be most vulnerable (Birkmann, Fernando and Hettige 2007). 

Adaptive capacity is associated with levels of governance and civil and political rights 
(Brooks, Adger and Kelly 2005). Countries with strong institutions (such as a strong financial 
sector), openness to trade, and higher levels of government spending were found to be able 
to better withstand initial disaster shocks (Kahn 2005, Noy 2008, Toya and Skidmore 2007).  

It is vital that institutional and adaptive capacity is strengthened in cities where these are 
weak, but that are highly susceptible to flooding, storm surges, and tropical cyclones. Dhaka, 
a city regarded as being at extreme risk from climate change, is a case in point.   
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C. The Climate–Disaster Link 

Climate change is not a necessary or a sufficient condition for disasters to occur.  
Mechanisms that link climate change and natural hazards cannot be held solely responsible 
for long-term trends in disaster losses adjusted for increases in wealth and population 
(Watson 2010). The association between climate change and the loss of lives and damages 
due to natural disasters is another point of scientific controversy. The debates linger even in 
cases where the climate–disaster link seems to be clearly evident. Some have argued that 
with data heterogeneity, trends, and attribution to anthropogenic climate forcing are 
extremely difficult to ascertain (Kunkel et al. 2013).  

Several studies have found that income, education, and institutions shape vulnerabilities 
and, subsequently, natural disaster impacts (Brooks, Adger and Kelly 2005, Kahn 2005, Noy 
2008, Rentschler 2013, Kellenberg and Mobarak 2008). Thomas, Albert, and Hepburn 
(2014) examined the importance of climate hazards (measured by climate anomalies) as a 
determinant of disaster risk in Asia and the Pacific, along with population exposure and 
vulnerability. Unlike previous econometric analyses, the authors examined the frequency of 
intense natural disasters as the dependent variable because it is less likely to have a 
reporting bias than the alternatives. Their results suggest that rising population exposure and 
greater climate variability play significant roles in explaining the frequency of climate 
disasters in the region.  

Hydrometeorological disasters are strongly and positively associated with rising population 
exposure as well as precipitation anomalies, while climatological disasters are strongly 
associated with changing temperatures. Even after controlling for the effect of population 
exposure and vulnerability, climate factors have been a significant factor in the rise in 
frequency of intense hydrometeorological disasters in Asia and the Pacific in the past four 
decades, clearly linking climate change to disaster risks.   

The evidence that it is very likely that the rising incidence of GHG emissions in the 
atmosphere is altering the climate system, the findings suggest a connection between the 
frequency of intense natural disasters observed in the region and human-induced climate 
change. Cyclone Nargis in Myanmar and Hurricane Sandy in the USA are clear indications 
that both developing and developed countries face climate-related disaster risks.  

Deaths, injuries, displacements, damage, and overall disaster impact are affected by hazard 
intensity, exposure, and vulnerability. Awareness, preparedness, technological progress, 
and disaster risk reduction have clearly reduced deaths from comparable hazards. But 
damage from comparable events is greater in developed countries, indicating their higher-
valued assets and structures, and the higher cost of rebuilding.  

Climate change has already damaged the poorest and most vulnerable countries. Scientific 
evidence confirms the Earth’s warming atmosphere and loss of glacier mass and ice sheets. 
Evidence has also shown that it is extremely likely that both are caused by anthropogenic 
GHG emissions.  
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III. ECONOMETRIC ANALYSIS 

 

In this section, we examine statistically the role played by the three principal elements of 

natural disaster risk. The variable sought to be explained is the incidence of disasters, which 

is represented here by the number of disasters causing a minimum number of deaths or 

people affected (that is, requiring immediate assistance with basic survival needs such as 

food, water, shelter, sanitation, or medical assistance) in a given period. There are other 

measures too, for example, the level of damages in US dollars. However, measuring the 

impact of natural disaster in monetary terms involves a number of data issues, chiefly 

regarding accuracy, because of the lack of standards for comparable estimation across 

economies or across disasters within an economy.  

 

A. Data and Method  

Determinants of Climate-Related Disasters: Zero-Inflated Count Models 
 
We develop econometric estimations using annual data on disasters for a sample covering 
most countries in the world. The model considers count data of disasters5 by country 𝑖 and 

year 𝑡 for 1970–2013. The dependent variables are the annual frequency of intense 
hydrometeorological disasters (𝐻𝑖𝑡) and the annual frequency of intense climatological 

disasters (𝐶𝑖𝑡) that cause at least 100 deaths or directly affect at least 1,000 people. Intense 
hydrometeorological disasters relate to floods and storms while climatological disasters 
relate to droughts and wild fires.  
 

The explanatory variables include 𝑊𝑖𝑡: average precipitation deviation in the country6 
(measured as departures from the average for its 30-year base climatology period 1961–
1990),  𝑍𝑖𝑡: average surface temperature deviation in the country7 (measured as departures 

from the average for its 30-year base climatology period 1961-1990), and 𝑮𝑡: global climatic 
change indicators including carbon dioxide accumulation in the atmosphere and sea 
temperature deviations from trend.8 The study uses several proxies for vulnerability and 

                                                           
5 Data for the disaster variables are from EM-DAT (Guha-Sapir, Below and Hoyois 2015). EM-DAT 
reports events causing at least 10 deaths, affecting at least 100 people, or prompting a declaration of 
a state of emergency or a call for international assistance.  As in Thomas et al. (2013, 2014), we 
considered disasters that cause at least 100 deaths or directly affect at least 1,000 people because 
this approach is less likely to have a reporting bias.  

6 We use the centennial Global Precipitation Climatology Centre (GPCC) Full Data Reanalysis 
(Version 7.0) of monthly global land-surface precipitation based on the 75,000 stations worldwide 
that feature record durations of 10 years or longer. The monthly totals used in this study are on a 
regular grid with a spatial resolution of 1.0°x1.0° latitude by longitude (Schneider, et al. 2015).  

7 Based on HadCRUT3v (variance adjusted version), a gridded dataset of global historical surface 
temperature anomalies which is a collaborative dataset product of the Met Office Hadley Centre and 
the Climatic Research Unit at the University of East Anglia (Brohan, et al. 2005). 

8 Annual atmospheric CO2 stock level (parts per million) is derived from in situ air measurements at 
the Mauna Loa Observatory, Hawaii (Latitude 19.5A°N Longitude 155.6A°W and at elevation of 
3397m) (Tans n.d.). Link ftp://aftp.cmdl.noaa.gov/products/trends/co2/co2_mm_gl.txt. Average 
annual sea temperature deviation in Celsius is from NOAA database version 3.5.1 (00 northern -30 
northern) where anomalies are based on the climatology from 1971 to 2000. Link 
ftp://ftp.ncdc.noaa.gov/pub/data/mlost/archive/v3.5.1/products/aravg.ann.ocean.00N.30N.asc 

 

ftp://aftp.cmdl.noaa.gov/products/trends/co2/co2_mm_gl.txt
ftp://ftp.ncdc.noaa.gov/pub/data/mlost/archive/v3.5.1/products/aravg.ann.ocean.00N.30N.asc
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exposure including real gross domestic product per capita and its square as a measure of 
vulnerability (𝑽𝑖𝑡) and population per country as a proxy measure for exposure (𝑼𝑖𝑡). 
 
We use a two-way fixed effects method to allow the estimation of common-to-all-countries or 
global time effect in addition to country and time-specific climatic and non-climatic effects. 
Global climate, for example, affects sea levels and their temperatures as consequences of 
the reduction of polar ice caps and other phenomena. As world sea levels and their 
temperatures increase, the effects of local temperatures and local precipitation on the 
magnitude and frequency of disasters in a particular country may worsen. An increase in 
precipitation, for example, may have a much greater effect on the magnitude and scope of 
flooding if the sea level is already high. 
  
The coefficients of the common-to-all-countries time dummy variables are likely to capture 
the varying impact of global phenomena associated with a great number of global climatic 
variables.  But they may not necessarily be related only to climatic variables. For example, 
technological and communication improvements may allow countries to improve the way 
they confront negative climate factors and therefore could help mitigate their impact on the 
size of disasters. Also, the common-to-all-countries time dummies may capture a worsening 
disaster effect due to increasing concentrations of population in exposed areas—a variable 
for which we do not have adequate data—which could be a common trend across all or most 
countries.  
 
So in addition to the local climate conditions in each country we also explore the use of 
alternative global climate change indicators (𝑮𝑡): the annual atmospheric CO2 level and the 
annual average sea temperature deviation, as explanatory variables. Thus, we use two 
approaches. 
 
Approach 1. We use global climate indicators as a separate variable directly in the 
regression analysis, controlling for country-specific effects only (one-way fixed effect). 
These global indicators are annual atmospheric CO2 level and annual average sea 
temperature deviation. We estimate these models using country fixed effects. A hypothesis 
is that global climate change variables exert an independent effect on disasters over and 
above local climatic conditions. 
 
Approach 2. We estimate the model using a two-way9 fixed effects method that includes 
controlling for both country-specific effects and common-to-all-country effects represented 
by a time dummy variable. This allows detection of global effects over and above local 
country effects.  
 
As both dependent variables are nonnegative count values, count regression models such 
as the Poisson and negative binomial (NB) regression models are initially considered. The 
Poisson regression model (equation 1) is estimated for climatological disasters (𝐶𝑖𝑡) 

because preliminary analyses show that this variable satisfies the necessary equally 
dispersed assumption. The NB regression model (equation 2), however, is a generalization 
of the Poisson regression model that allows for over-dispersion by introducing an 

unobserved heterogeneity term for observation 𝑖 for a particular period. Hence it is used in 
estimating for hydrometeorological disasters (𝐻𝑖𝑡) as likelihood ratio tests indicated the 

                                                           
9 The two-way fixed effect method controls for both fixed effect by country (which are added by the 

command fe in Stata) and by time dummies (which are added by hand as i.year, fe). This approach 
can be used with negative binomial, Poisson and zero inflated models (see Stata User’s Guide). 
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existence of over-dispersion. 10 We estimate the following equations using a large country 
sample of 157 countries. 11 

 
 

𝐸[𝑦𝑖𝑡 = 𝐶𝑖𝑡| 𝑿𝑖𝑡] = 𝑒𝑿𝑖𝑡
′ 𝜷 

                      =  𝑒𝑥𝑝(𝛽0 + 𝛽1𝑼𝑖𝑡 + 𝛽2𝑽𝑖𝑡 +  𝛽3𝑊𝑖𝑡 + 𝛽4𝑍𝑖𝑡 + 𝛽5𝑮𝑡)              (1) 

𝐸[𝑦𝑖𝑡 = 𝐻𝑖𝑡| 𝑿𝑖𝑡, 𝜀𝑖𝑡] = 𝑒𝑿𝑖𝑡
′ 𝜷𝜀𝑖𝑡 

                        =  {𝑒𝑥𝑝(𝛽0 + 𝛽1𝑼𝑖𝑡 + 𝛽2𝑽𝑖𝑡 +  𝛽3𝑊𝑖𝑡 + 𝛽4𝑮𝑡)}𝜀𝑖𝑡              (2) 

 

The explanatory variables (𝑼𝑖𝑡, 𝑽𝑖𝑡, 𝑊𝑖𝑡, 𝑍𝑖𝑡, 𝑮𝑡) are: 

a. population exposure (𝑼𝑖𝑡) or the degree to which people are in harm’s way 

b. vulnerability (𝑽𝑖𝑡) or the population’s capability to address the problem  

c. the climate-related hazard, average precipitation deviation (𝑊𝑖𝑡) and average 
temperature deviation (𝑍𝑖𝑡) in a given year 

d. global climate change indicators (𝑮𝑡): atmospheric CO2 level and average sea 

temperature deviation 

In addition, the regression also includes total population per country in the relevant year as 
a control variable. Even though population density is already included as an independent 
variable, this may not pick up the possibility that frequency of natural disasters surpassing 
the “intense” reporting threshold (that is, at least 100 deaths or at least 1,000 people 
affected due to a natural disaster) would be higher when the overall population increases.  

As with most cases in count data, the count (occurrence) of intense disasters—the 
dependent variable—is characterized by excess zeros and over-dispersion. In particular, 
67% of observations for hydrometeorological disasters and 83% for climatological disasters 
have zero counts. Failing to account for the prevalence of zeros in the dependent variable 
would be likely to result in inconsistent estimators.  
 
There are count models that seem quite useful for dealing with the problem implied by the 
existence of zeros in the dependent variable (in addition to over-dispersion) in the context of 
both the Poisson and NB regression models. The zero-inflated (ZI) count model (introduced 
by Lambert, 1992 and refined by Johnson et.al., 1992) allows for modeling assuming it is 
possible that the zero-observed dependent variable may either correspond to countries 
which in a particular year had a zero probability of having a disaster as measured by the 
count variable and countries that had a positive probability of a disaster but that, due to 
random conditions in that year, experienced no disaster and consequently also had a zero 
dependent variable.  

                                                           
10 In our dataset, the likelihood ratio (LR) tests reject the hypothesis that coefficient of dispersion (𝛼) is 

equal to zero (Ho: 𝛼 = 0) at 1% level of significance in all specifications involving intense 
hydrometeorological disasters, but not in those that involve climatological disasters. 

11 A summary of descriptive statistics for the variables used in the regressions is provided in Appendix 
1. 
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In particular, for each country 𝑖 in year 𝑡, there are two possible data generation processes—
the selection of which is a result of a Bernoulli trial. The first process, which generates only 
zero counts, is chosen with probability 𝜌𝑖. The second process, 𝑔(𝑦𝑖𝑡|𝑿𝑖𝑡), with probability 

 1 − 𝜌𝑖 generates positive counts from either a Poisson or a NB distribution. In general, we 
have: 
 

𝑦𝑖𝑡~ {
0                              𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦          𝜌𝑖  

 𝑔(𝑦𝑖𝑡|𝑿𝑖𝑡)               𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦     1 − 𝜌𝑖 
                                           (3) 

 
 

Then the probability of {𝑌𝑖𝑡 = 𝑦𝑖𝑡|𝑿𝑖𝑡} can be expressed as: 
 

𝑃(𝑌𝑖𝑡 = 𝑦𝑖𝑡|𝑿𝑖𝑡 , 𝑰𝑖𝑡) = {
𝜌(𝛾′𝑰𝑖𝑡)      +  {1 − 𝜌(𝛾′𝑰𝑖𝑡) 𝑔(0|𝑿𝑖𝑡)}        𝑖𝑓 𝑦𝑖𝑡 = 0

                           {1 − 𝜌(𝛾′𝑰𝑖𝑡) 𝑔(𝑦𝑖𝑡|𝑿𝑖𝑡)}      𝑖𝑓 𝑦𝑖𝑡 > 0
        (4) 

 
In the empirical estimation, the probability 𝜌𝑖 depends on the characteristics (a subset of the 
explanatory variables) of country 𝑖, hence,  𝜌𝑖 is written as a function of 𝑰𝑖𝑡

′ 𝛾 where 𝑰𝑖𝑡
′ is the 

vector of zero-inflated covariates and 𝛾 is the vector of zero-inflated coefficients to be 
estimated. A probit function is specified as the zero-inflated link function—relating the 
product  𝑰𝑖𝑡

′ 𝛾 (which is scalar) to the probability 𝜌𝑖.  

 
We thus estimate hydrometeorological disasters using a negative binomial zero-inflated 
(ZINB) regression model and climatological disasters with Poisson zero-inflated (ZIP) 
regression model.12 The use of the zero inflated models reduces the likelihood of obtaining 
inconsistent estimators as a consequence of ignoring the existence of zeroes in the left-
hand-side variable which can have heterogeneous origins.  
 
 
Role of Global Climate Change Indicators: A Co-integration Analysis Approach 
 
The estimated time dummy coefficients from the two-way fixed effects model (Approach 2) 
are subjected to a co-integration analysis 13 with annual data on atmospheric CO2 deviation 
(with year 1970 as base level) and on average sea temperature deviation to elucidate 
whether time dummy coefficients and each of these global climate variables are positively 
correlated in a meaningful way (that is, whether they co-integrate).  
 
First we regress 𝑦𝑡 (the coefficients of the time dummies) on 𝑥𝑡 (series of atmospheric CO2 
deviation and of average sea temperature deviation). This can be generally expressed as:   
 

𝑦𝑡 = 𝜇 + 𝛽𝑥𝑡 + 𝜇𝑡                                                     (5) 
 

where  𝛽̂ is the predicted value of the co-integrating coefficient obtained from the ordinary 

least squares (OLS) estimation and 𝜇𝑡 is the predicted error series. The OLS estimation of 

equation (5) gives us an unbiased estimation about 𝛽̂. However, its standard errors are 
inconsistent and are not normally distributed. Hence, in this case, the usual inferential 
procedures do not apply. 
 

                                                           
12 Vuong tests revealed significant positive test statistics which favor the zero-inflated models over the 

standard Poisson and NB count regression models. This means that the zero-inflated method is 
necessary given the preponderance of zeroes of the dependent variable (Vuong 1989).  

13 See Appendix 2 for a full description of the co-integration analysis. 
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In order to analyze the significance of 𝛽̂—the co-integrating coefficient—Engle and Granger 
(1987) showed that both the dependent and independent variables co-integrate if and only if 
there is an error correction model (ECM) for either 𝑦𝑡 and 𝑥𝑡 or both. To illustrate the link, let 

equation (5) be an equilibrium relation between two I(1) series. Since 𝜇𝑡 is a stationary mean 
zero variable, there exist a stationary autoregressive moving average (ARMA) model for 𝜇𝑡. 
Assume for simplicity that it is an autoregressive model AR(2): 
 

𝜇𝑡 = 𝜃1𝜇𝑡−1 + 𝜃2𝜇𝑡−2 + 𝜀𝑡                                                (6) 
 
In particular, we can estimate equation (7) using OLS, the unrestricted autoregressive 
distributed lag (ADL) model, where the lag lengths are set to eliminate residual 
autocorrelation, an ADL(2,2) model: 
 

𝑦𝑡 = 𝛿 + 𝜃1𝑦𝑡−1 + 𝜃2𝑦𝑡−2 + 𝜑0𝑥𝑡 + 𝜑1𝑥𝑡−1 + 𝜑2𝑥𝑡−2 + 𝜀𝑡                    (7) 
 
To obtain the ECM form:  
 

∆𝑦𝑡 = 𝛿 + 𝜆1∆𝑦𝑡−1 + 𝑘0∆𝑥𝑡 + 𝑘1∆𝑥𝑡−1 + 𝛾1𝑦𝑡−1 + 𝛾2𝑥𝑡−2 + 𝜀𝑡                (8) 
 

where 𝜆1 =  −𝜃2, 𝑘0 = 𝜑0, 𝑘1 = −𝜑2 , 𝛾1 =  𝜃1 + 𝜃2 − 1 and 𝛾2 = (𝜑0 + 𝜑1 + 𝜑2).  
 

Empirically, we estimate equation (8) using the OLS method. In our case, 𝑦𝑡 is the time 
dummy coefficient which represents the global impact of disasters. Hence, ∆𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−1. 
Besides, 𝑥𝑡 represents global climate variables (atmospheric CO2 deviation and average sea 
temperature deviation). The rest of the variables in equation (8) are elaborated using lags or 
differentials of both  𝑦𝑡 and 𝑥𝑡.  
 
From (7) and (8), the estimator of the co-integrated coefficient is given by the long-run 
solution expressed in equation (9):  
 

𝛽̂ =
𝜑0 + 𝜑1 + 𝜑2

1 − 𝜃1 − 𝜃2
= −

𝛾2

𝛾1
                                                               (9) 

 

Then, with both parameters we obtain 𝛽̂ and its right standard error to analyze its 
significance. 
 
 

B. Regression Results on Disaster Risk Factors 

Table 1 shows estimates explaining the occurrence of intense hydrometeorological disasters 
over 1971-2013. The first and second columns show the estimates using one-way fixed 
effects (country effects only), including in turn as explanatory variable the annual level of 
atmospheric CO2 and the annual average sea temperature deviation as an indicator of 
global climate effect. The third column reports the estimates of the two-way fixed effects 
using time dummies in addition to country fixed effects. All regressions use a negative 
binomial method of estimation. 
 
The estimates are remarkably consistent. All local climate variables exhibit highly significant 
effects in the expected direction. Precipitation deviations exert a positive impact on the 
number of intense local hydrometeorological disasters. In this discussion of 
hydrometeorological events, temperature deviations are not included in addition to the 
precipitation deviations (if they were, the results would show a negative relationship with the 
dependent variable). 
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Moreover, both global climate change variables, according to one-way fixed effects, show 
positive and highly significant effects. However, it is possible that the global climate variables 
are correlated with other global variables over time which could also exert a positive impact 
on disasters. This would then imply that the coefficients of the global climate variables are 
inconsistent. This is why the second approach is important.  
 
In the two-way fixed effects model, the time dummy variables capture any global effects 
whether climate-related or otherwise. The time dummy coefficients14 are highly significant 
and tend to become larger over the time period. The approach is further complemented by 
the co-integration analysis where we elucidate whether or not there exists a meaningful 
relationship between the time dummy coefficients and global climate variables. 
 

Table 1. Determinants of the Frequency of Intense HydroMeteorological Disasters 
(dependent variable: frequency of intense hydrometeorological disasters,1971–2013) 

 

Explanatory Variables  
One-Way Fixed Effect 

 Two-Way 
Fixed Effect  

(1) (2) 
 

(3) 

Exposure        

Ln (population density) 0.196*** 0.196***  0.199*** 

 
[0.0207] [0.0232]  [0.0175] 

Vulnerability    
 Ln GDP per capita (constant 2005 US$) 0.219 0.257  0.241 

 
[0.175] [0.207]  [0.171] 

Square of Ln (GDP per capita) -0.0169 -0.0194  -0.0184* 

 
[0.0119] [0.0144]  [0.0111] 

Climate hazard    
 Average precipitation deviation 0.0155*** 0.0178***  0.0158*** 

 
[0.00256] [0.00165]  [0.00117] 

Global climatic indicators    
 Atmospheric CO2 level 0.0177***   
 

 
[0.00139]   

 Average sea temperature deviation  1.719***   

  [0.180]   

     

Population (million) 0.00221*** 0.00219***  0.00219*** 

 
[0.000919] [0.000127]  [0.000119] 

     

Observations 5830 5830  5830 

Akaike Information Criterion (AIC) 11,187.04 11,250.81  11,076.87 

Bayesian Information Criterion (BIC) 11,247.08 11,310.85  11,136.90 

LR Test 462.16*** 471.90***  308.74*** 

Vuong Test 11.49*** 11.47***  11.53*** 
 
Notes: * = significant at 10%, ** = significant at 5%, *** = significant at 1%. Standard errors in brackets. 

Source: Authors’ calculations.  

Table 2 shows the estimates on similar regressions for intense climatological disasters. The 
results on the effects of the local climate variables are not as strong or consistent as those 

                                                           
14 Available from the authors upon request. 
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for hydrometeorological disasters. In the case of climatological events, we also include 
temperature deviations as an explanatory variable. Surprisingly, the temperature deviations 
do not show statistical significance in any of the three regressions.  
 

Table 2. Determinants of the Frequency of Intense Climatological Disasters 
(dependent variable: frequency of intense climatological disasters, 1971–2013) 

 

Explanatory Variables 
One-way fixed effect 

 Two-way    
fixed effect 

(1) (2) 
 

(3) 

Exposure        

Ln (population density) -0.105*** -0.0869**  -0.111*** 

 
[0.0355] [0.0422]  [0.0304] 

Vulnerability    
 Ln GDP per capita (constant 2005 US$) -1.464*** -1.343***  -1.525*** 

 
[0.371] [0.201]  [0.356] 

Square of Ln (GDP per capita) 0.0964*** 0.0895***  0.0994*** 

 
[0.0240] [0.0134]  [0.0241] 

Climate hazard    
 Average precipitation deviation -0.00663* -0.00622***  -0.00619** 

 
[0.00352] [0.00198]  [0.00291] 

Average temperature deviation 0.0670 0.0727  -0.0915 

 
[0.134] [0.0747]  [0.114] 

Global climatic indicators    
 Atmospheric CO2 level 0.0146***   
 

 
[0.00218]   

 Average sea temperature deviation  1.521***   

  [0.239]   

     

Population (million) 0.00147*** 0.00147***  0.00153*** 

 
[0.000106] [0.000125]  [0.000107] 

     

Observations 4,499 4,499  4,499 

Akaike Information Criterion (AIC) 4,150.778 4,155.279  4,017.679 

Bayesian Information Criterion (BIC) 4,208.482 4,212.983  4,075.384 

Vuong Test 4.090482*** 4.161369***  3.960258*** 
 
Notes: * = significant at 10%,** = significant at 5%, *** = significant at 1%. Standard errors in brackets. 

Source: Authors’ calculations.  

 

However, the coefficients of both global climate variables are highly significant and with the 
expected signs. Also, the results of the two-way fixed effects show that most of the 
coefficients of the time dummy variables are significant and show increasing values over 
time. This permits us to use the second stage time series analysis as involved in the second 
approach. 
 
These results suggest that all three factors—rising population exposure, population 
vulnerability, and changing climate—may play a role in explaining the global increase in the 
frequency of intense climate-related disasters. While climatological disasters are clearly 
associated with changing temperature, hydrometeorological disasters are most clearly 
associated with rising exposure and changing precipitation. 
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Since the 1980s, a similar analysis has been carried out using EM-DAT disaster data 
(Jennings 2011). However, this is for all types of natural disasters with factors identified, 
including population exposure, vulnerability, as well as other factors that affect their 
reporting (such as press freedom in a country). Similarly, this study points to the 
significance of exposure and vulnerability indicators in the disaster data, in addition 
acknowledges the likely effects of weather or climate change shocks, which is indicative of 
the changing climate as the IPCC (2012b) suggests. 

Local Versus Global Climate Effects 
 
The estimates of the coefficients of the common-to-all countries time dummies are jointly 
significant and most are individually significant as well. We interpret this significance as an 
indication that, in addition to local country factors, there are global factors affecting the 
frequency of climate-related natural disasters that may be related to the accumulation of 
carbon emissions in the atmosphere or global temperature changes. In the next section we 
use time series analysis to probe whether or not the values of the global effects co-integrate 
with the stocks of CO2 in the atmosphere and the average sea temperature. 
 

C. Role of Atmospheric CO2 Accumulation on Natural Disasters  
 

An important finding of the analysis in the previous section is that the global effects 
represented by the common-to-all-countries time effects were significant and explain a 
significant part of the frequency of both hydrometeorological and climatological disasters. 
That is, the global effect appears to play an important role even after accounting for local or 
country-specific climate conditions. More importantly, the global effect on natural disasters 
appears to worsen over the period of analysis. The coefficients of the time dummy variable 
are generally increasing over time in a statistically significant manner.   
 
It is now necessary to test whether or not the estimated global effects on disasters are due 
to global climatic factors. Specifically, we implement time-series analysis to ascertain 
whether there is a meaningful relationship between the estimated increased global effect 
(represented by the increasing value over time of the coefficient of the common-to-all-
countries dummy variable) and the accumulation of carbon dioxide in the atmosphere and, 
alternatively, the higher sea temperatures. To put this in time-series analysis jargon, do the 
series of CO2 and of time dummy coefficients co-integrate? 
 
Time Series Analysis 
 
The first panel of Figure 5(a) shows the evolution of the estimated coefficients of the time 
dummy variables for hydrometeorological disasters and the CO2 concentrations in the 
atmosphere during 1970–2013. As can be seen, both series exhibit upward trends over the 
period. The trends in the series of climatological disasters in the first panel of Figure 5(b) are 
similar to those in the series for hydrometeorological disasters. The series appear to be non-
stationary, suggesting that any regression between the two series would yield spurious 
estimates of the goodness-of-fit of the regression, including the estimates of the standard 
errors of the estimated coefficients. In fact, formal tests suggest that the series are non-
stationary. 
 
The second panel in Figures 5(a) and 5(b) shows the series expressed in first differences, 
respectively, which turned out to be stationary. In other words, each of the three series (time 
dummy coefficients for hydrometeorological disasters, for climatological disasters, and CO2 
series) is integrated of order one.  
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Figure 5.Trend Relationship between Hydrometeorological and Climatological 
Disaster Time Dummy Values and Atmospheric CO2 Stocks (1970-2013) 

 

 

 
 

Figure 6.Trend Relationship between Hydrometeorological and Climatological 
Disaster Time Dummy Values and Sea Temperature Deviation (1970–2013) 
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As can be seen in Figures 5 and 6, the series in levels are non-stationary as both variables 
move together, exhibiting an ever increasing trend. However, the figures also suggest that 
using first differences the series might be stationary. Below we statistically test whether that 
is in fact the case. 
 
In implementing the co-integration analysis, first we estimate ordinary least squares (OLS) 
regressions in levels. Table 3 provides these regression estimates. Since the estimated 
coefficients are not in general asymptotically normal, the usual inferential procedures do not 
apply; in particular, the estimates of the standard errors are inconsistent. However, we can 
use the estimated coefficients for further estimation to test for co-integration. The hypothesis 
to be tested is whether the predicted errors obtained from the regression estimations are 
stationary. Even if all individual series in levels are non-stationary, it is possible that the 
linear combination resulting from the estimates of each pair of series (time dummy 
coefficients of hydrometeorological disasters-CO2 and of climatological disasters-CO2) may 
be stationary. If they are it means that the two pairs of series co-integrate. 
 

Table 3. OLS Regression Estimates of Time Dummy Coefficients of Intense  
Climate-Related Natural Disasters on Stock of Atmospheric CO2 

 

 Hydrometeorological Climatological 

Stock CO2 0.0258*** 0.0228*** 

 
[0.00263] [0.00481] 

   

Constant -8.646*** -6.374*** 

 [0.947] [1.780] 

Observations 43 43 

Akaike Information Criterion (AIC) 15.87151 76.76739 

Bayesian Information Criterion (BIC) 19.39391 80.28979 

   

Tests for Stationarity   

Dickey-Fuller (DF) -2.984*** -3.378*** 

Dickey-Fuller Generalized Least 
Squares (DF-GLS) 

-1.491 -2.749*** 

1% Critical Value -2.625 -2.625 

5% Critical Value -1.95 -1.95 
 
Notes: * = significant at 10%, ** = significant at 5%, *** = significant at 1%. Standard errors in brackets. 

Source: Authors’ calculations based on NOAA data.  

 

Table 3 also shows the results of tests for stationarity or co-integration using the series of 
predicted errors obtained from the regression estimation. Both Dickey-Fuller (DF) and 
Dickey-Fuller generalized least squares (DF-GLS) test whether a unit root is present in the 
series of the predicted errors. The DF-GLS is similar to the DF test but it also corrects for 
heteroscedasticity. Tabulated critical values at 1% and 5% are also shown in Table 3.15 In 
the case of hydrometeorological disasters, the DF statistic allows rejection of the null 
hypothesis that the series have a unit root. However, the DF-GLS test indicates a failure to 
reject the null hypothesis which implies that hydrometeorological disasters do not appear to 
co-integrate with the atmospheric CO2 stock levels. 
 

                                                           
15 See MacKinnon, J. G. (2010). 
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In the case of climatological disasters, the stationary tests are more definitive (Table 4). The 
test for co-integration of global effects on natural disasters with CO2 series suggests that co-
integration exists.  
 
 

Table 4. OLS Regression Estimates of Time Dummy Coefficients of Intense  
Climate-Related Natural Disasters on Sea Temperature Deviation  

 

 Hydrometeorological Climatological 

Average Sea Temp Dev 2.5041*** 2.6731*** 

 
[0.2424] [0.5149] 

   

Constant 0.3959*** 1.5529*** 

 [0.0541] [0.1166] 

Observations 43 43 

Akaike Information Criterion (AIC) 32.08042 68.09936 

Bayesian Information Criterion (BIC) 35.60282 71.62176 

   

Tests for Stationarity   

Dickey-Fuller (DF) -3.9809*** -3.9393*** 

Dickey-Fuller Generalized Least 
Squares (DF-GLS) 

-4.1444*** -3.7532*** 

1% Critical Value -2.625 -2.625 

5% Critical Value -1.95 -1.95 
 

Notes: * = significant at 10%,** = significant at 5%, *** = significant at 1%. Standard errors in brackets. 

Source: Authors’ calculations based on NOAA data.  

 
The tests presented in Tables 3 and 4 are not in general considered to have sufficient 
power. For this reason we need to corroborate the existence of stationarity and co-
integration using an error correction model as developed below.  
 

In this study, we implemented a three-step error correction model with AR (2). 
 
Table 5 shows the estimates of the ECM for hydrometeorological and climatological 
disasters-CO2 series, respectively. While the coefficients of CO2(t-1) (𝛾2) are always positive 

but not significant, the error correction coefficient, disasters(t-1) (𝛾1), is in all cases negative 
and significant, confirming a dynamic process that is consistent with the existence of co-
integration between the series in question. Moreover, the adjustment process is stable in all 
cases due to the fact that |𝛾1| <1. 16 
 
The satisfactory ECM estimates in conjunction with the rejection of the unit root tests and 
lack of rejection of the hypothesis—that the series resulting from the combination of the 
global effects on natural disasters and CO2 are stationary—provide convincing evidence that 
the series of global effects on natural disasters and the accumulated stocks of CO2 in the 
atmosphere do co-integrate. That is, a meaningful impact of CO2 accumulation on the 
number of natural disasters appears to exist. 

                                                           
16 We note that while 𝛾2coefficients are not significant they are always positive. Moreover, since these 

coefficients reflect short-run effects, their lack of significance may simply reflect the fact that the 
relationship between the series is mostly long-run in nature. 
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Table 5. Co-integration Analysis of Disasters-CO2 Series:  

Engle-Granger Three-step Method Results  

 

 

Hydrometeorological 
disasters 

 
Climatological 

disasters 

Level  
First Diff. 

(D.1)  
 Level  

First Diff. 
(D.1)  

      

Stock CO2 0.0258***   0.0228***  

 
[0.00263]   [0.00481]  

D.1 disasters (t-1)  0.203   0.0167 

 
 [0.180]   [0.163] 

D.1 CO2  0.0132   0.0621 

 
 [0.0305]   [0.0500] 

D.1 CO2 (t-1)  0.00106   -0.0242 

  [0.0302]   [0.0471] 

disasters (t-1)  -0.541**   -0.473** 

  [0.239]   [0.226] 

CO2 (t-1)  0.0127   0.00917 

  [0.00766]   [0.00561] 

Constant -8.646*** -4.220  -6.374*** -2.479 

 [0.947] [2.643]  [1.780] [1.786] 

Observations 43 41  43 41 

AIC 15.87151 10.05464  76.76739 69.25592 

BIC 19.39391 20.33607  80.28979 79.53735 

      
 

Notes: * = significant at 10%, ** = significant at 5%, *** = significant at 1%. Standard errors in brackets. 
             
Source: Authors’ calculations based on NOAA data.  

 
 
The co-integration analysis using average sea temperatures instead of CO2 gives similar 
results, showing that the coefficients of the dummy variables and sea temperatures do co- 
integrate. 
 
Table 6 shows the estimates of the ECM for hydrometeorological and climatological 
disasters- sea temperature deviation series. While the coefficients of Sea Temp Dev(t-1) (𝛾2) 
are always positive and significant in hydrometeorological and climatological disasters, the 
error correction coefficient, disasters(t-1) (𝛾1), is in all cases negative and significant thus 
confirming a dynamic process among them.  
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Table 6. Co-integration Analysis of Disasters-Sea Temperature                                

Deviation Series:  Engle-Granger Three-step Method Results 

 

 

Hydrometeorological 
Disasters 

 
Climatological 

Disasters 

Level  
First Diff. 

(D.1)  
 Level  

First Diff. 
(D.1)  

      

Average Sea Temp Dev 2.5041***   2.6731***  

 
[0.2424]   [0.5149]  

D.1 disasters (t-1)  0.184   0.0723 

 
 [0.180]   [0.159] 

D.1 Sea Temp Dev   1.137**   1.856*** 

 
 [0.464]   [0.601] 

D.1 Sea Temp Dev (t-1)  -0.138   -0.288 

  [0.399]   [0.609] 

disasters (t-1)  -0.474***   -0.606*** 

  [0.161]   [0.195] 

Sea Temp Dev (t-1)  1.360**   2.107*** 

  [0.634]   [0.733] 

Constant 0.3959*** 0.186***  1.5529*** 0.887*** 

 [0.0541] [0.0676]  [0.1166] [0.319] 

Observations 43 41  43 41 

AIC 32.08042 .2094889  68.09936 57.61119 

BIC 35.60282 10.49092  71.62176 67.89262 

      
 

Notes: * = significant at 10%, ** = significant at 5%, *** = significant at 1%. Standard errors in brackets. 
             
Source: Authors’ calculations based on NOAA data.  

 
 

The estimates of the 𝛾1 and 𝛾2 coefficients allow us to obtain a measure of the key 

coefficient 𝛽̂ by using equation (9). Most importantly, the estimated standard error of 𝛽̂ is 
unbiased and distributes according to a normal distribution, what allows us to obtain 
consistent statistical inference.  
 
Significance of the results  
 
Table 7 shows the estimated elasticities of time-dummy coefficients of hydrometeorological 
and climatological disasters with respect to the global climate variables. These are evaluated 
at the mean values (1970-2013) of the time dummy variables and global climate variables. 
Table 8, on the other hand, shows the simulated effects of global climate variables on 
disasters using mean values (1994-2013). We provide the methodology used to measure 
these elasticities and the simulation variation in Appendix 3.  
 
The elasticities of time dummy coefficients for hydro-meteorological disasters for both global 
climate variables are much higher than those for climatological disasters. In the case of 
hydro-meteorological disasters, a 1% increase in the annual atmospheric CO2 level would 
likely increase the average size of time dummy coefficients of hydro-meteorological disasters 
by approximately 13.03%.  
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Table 7. Estimating the Elasticities of Time dummy Coefficients of Natural Disasters 

with Respect to Global Climate Variables 
 

 

Hydrometeorological Climatological 

CO2        
Stock  

Sea 
Temp  

CO2        
Stock  

Sea 
Temp  

 
       

Marginal effect (𝛽̂) 0.0235 2.8692 0.0194 3.4769 

 
    

Average sample value of CO2 level 
(in ppm) and Sea Temp (in °C)        
(1970-2013) 

359.55 14.098 359.55 14.098 

     

Average value of time dummy 
coefficients (1970-2013) 

0.648 0.648 1.822 1.822 

 
    

Elasticity of time dummy 
coefficients with respect to the 
global climate variables 

13.03 62.42 3.83 26.90 

 
    

 
Source: Authors’ calculations 

 
The elasticities reported in Table 7 indicate the effect of a 1% increase on the level of global 
climate variables on the average time dummy coefficients (obtained in the disaster 
regressions). The next step is to measure the effect of the changes in the time dummy 
coefficients on the level of disasters themselves using the estimates of the two-way fixed 
effect regressions.  Thus the combination of these two effects yields the estimates of the net 
effect of global climate change on the number of disasters. This is the elasticity of disasters 
with respect to the global climate variables. Appendix 3 shows details of these calculations.   
 
The elasticity of disasters reported in Table 8 show the percentage change in the average 
number of disasters as a likely result of a 1% percent increase on the level of global climate 
variables.  
 
Using these elasticities of disasters we can simulate the effects of climate change factors on 
the number of disasters. The bottom-half of Table 8 shows what proportion of the variation of 
disasters in the decade 1994–2013 are explained by the change in global climate variables. 
We simulated variations on atmospheric CO2 level. Two scenarios were considered, one for 
a representative country (the average of all the countries in our data) and the other for three 
Southeast Asian countries (Indonesia, the Philippines, and Thailand).  
 
To illustrate, the average observed occurrence of hydrometeorological disasters in the 
sample for a representative country was 0.74 per year. On average, the annual increase of 
atmospheric CO2 level is 2 ppm per year, equivalent to 0.5% of the current 400 ppm level. 
Using the elasticity of disasters to CO2 level that is equal to 11.94 (see Appendix 3 for 
derivation), we estimated a simulated variation on hydrometeorological disasters.  
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Table 8. Explained Variation on Hydrometeorological Disasters by 

the Atmospheric CO2 Concentration Level  
 

  
Representative 
Country 

Indonesia, 
Philippines, 
and Thailand 

  (1970-2013) 

For Elasticity of Disasters: 

 

  

Average sample values   

    Atmospheric CO2 (in ppm) 359.55 359.55 

      

Average annual disaster occurrence 0.480 4.575 

      

Average value of time dummy 
coefficients 

0.648 0.648 

      

Elasticity of disasters with respect to atmospheric CO2 level 
(evaluated at 2009-2013 values)  

      11.94 1.28 

For Simulation:    

Values (2009-2013 average)   

     Atmospheric CO2  (in ppm) 394 394 

Average annual disaster occurrence 0.775 7.2 

   

Current annual increase of    

Atmospheric CO2 (in ppm) 2  2 

  
Absolute annual disaster increase 

 
0.046 

          
         0.046 

   

Proportional annual disaster increase             5.9%                      0.64%              

      

 
Source: Authors’ calculations. 

 
As shown in the Appendix 3 and in Table 8, according to our estimates, the number of hydro 
disasters may increase by about 5.9% per year for the average country in the sample or 
0.046 more disasters per year. This implies that if the rate of increase of CO2 level continues 
its current trend, in about 17 years the number of hydro disasters would double from the 
current average value of 0.775 to 1.55 disasters per year for the average country. 
 
For Indonesia, the Philippines, and Thailand the effect is similar in absolute terms, 
increasing by about 0.05 more disasters per annum but percentage wise this amounts to 
0.64% per year. This implies that if the rate of increase of CO2 continues its current trend, 
the number of disasters in the three Asian countries would increase by one more annual 
disaster every 20 years. Thus, given the high current numbers of disasters which are almost 
ten times greater than for the average country in the sample, these three Asian countries 
would suffer much more; while the average country would increase its number of disasters 
by 0.74 disasters per year in 17 years of continuous increase of CO2 concentrations at the 
current rate, the Asian countries would increase by one disaster per year in 20 years.  
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Overall, the likely impact of a continuing increase in atmospheric CO2 level is larger in 
absolute numbers in Indonesia, the Philippines, and Thailand than in the rest of the 
countries. The empirical results also suggest that sea temperature has a much greater 
impact on hydrometeorological disasters. Studies have shown that the rise in sea surface 
temperature largely determines the strength of storms. Typhoon Haiyan in 2013, for 
example, was formed when the sea surface temperature of the Pacific Warm Pool Region 
was at its highest based on the records since 1981.  
 
Given the correlation between sea surface temperatures and maximum winds of typhoons, 
what really is alarming (as reported in Comiso, Perez and Stock 2015) is the significant and 
positive increasing trend of 0.2°C per decade of the sea surface temperatures in both West 
and Pacific Pool Regions. 
 

IV. CONCLUSIONS 

 
For 2015–2016, economists project growth rates of 3.5% for the global economy and 6% 
for Asia and the Pacific (IMF 2015, ADB 2015a). These growth projections do not integrate 
climate actions nor the impacts of climate change. The crucial question is—can the world 
sustain this type of growth without climate action? Can the world address climate change 
and switch to a low-carbon economy in time?  

Domestic reforms are paramount to any country’s growth prospects, but in our highly 
globalized world economy cross-border factors also matter. Perhaps surprisingly for some, 
the danger of climate change presents a greater threat than the current global economic 
malaise. If sustained growth is to take place, the climate challenge must be met.  

Specifically, we need to strengthen disaster resilience, care more for the urban 
environment, and confront climate change as part of the growth paradigm. Even in the face 
of fluctuating oil prices, countries must commit to phasing out the use of fossil fuels and 
transitioning to a low-carbon economy.  

Climate-related disasters have been prominent in the headlines worldwide in recent years. 
East and Southeast Asia top the list of the regions affected. Floods and storms have cut 
significantly into annual growth rates in Australia, the People’s Republic of China, 
Indonesia, the Republic of Korea, Thailand, and Viet Nam—a trend that is set to worsen. 
The Philippines, often the first major landfall for typhoons arising in the western Pacific, is 
among the most vulnerable countries. 

Multiple factors explain the mounting number and impact of disasters: people’s exposure to 
hazards, particularly in low-lying and coastal cities; greater vulnerability from soil erosion, 
deforestation; and just plain overcrowding. In addition, climate hazards are becoming more 
menacing, which presents the most tangible reason to confront climate change as part of a 
development strategy. Nevertheless, scientists are cautious about linking any particular 
disaster to climate change, whether it is Typhoon Bopha in Mindanao, the Philippines, or 
Hurricane Sandy on the US East Coast. In the same way, economists are reluctant to pin 
higher inflation in any given month on rising money supply. But, as with inflation, the 
broader associations are unmistakable. 

For some, the front-and-center needs of the poor heighten the dilemma of balancing growth 
with the environment. But that dilemma presents a false choice. Relying on a longstanding 
growth pattern that fuels economic momentum with environmental destruction will only 
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aggravate climate change and it is the poor who stand to lose the most from the ravages of 
global warming. 

The implication is that, while we must grow fast, we also need to grow differently. In 
essence, we need a new strategy that values all three forms of capital—physical, human, 
and natural. Sound growth policies have long been understood as those that expand 
investments in physical and human capital. But unless we also invest in natural capital, all 
bets are off. The 17 Sustainable Development Goals acknowledge this strong link between 
human well-being and environmental and ecosystem services. So what needs to be done?  

First, we need to build disaster resilience into national growth strategies. Japan invests 
some 5% of its national budget in disaster risk reduction and has avoided much worse 
economic damage and deaths from disasters because of this (Government of Japan 2005).  

High returns on such investments are evident even where the total spending is far less than 
in Japan. In the Philippines, the effects of flooding in Manila after heavy monsoon rains in 
August 2012 contrasted strongly with the devastation in the city from Tropical Storm 
Ketsana in 2009. The country has achieved vast payoffs from measures such as social 
media alerts, preemptive evacuations, and early warning systems. The Philippine case also 
highlights the benefits of the hazard maps and upgraded rain and water-level monitoring 
systems promoted by Project NOAH (the Nationwide Operational Assessment of Hazards). 

Yet, dealing with natural disasters is still largely considered a cost to be borne after calamity 
strikes, rather than an investment to confront a growing threat. Disaster risk reduction 
accounts for just 40 cents of every $100 in total international development aid. For 
governments, one recommended level of spending in this respect is 1% to 2% of national 
budgets. But more important than the exact percentages is promoting their effective use. 

Second, planners need to raise the priority of urban management as a strategic thrust. The 
five cities considered most vulnerable to natural hazards are all in Asia: Dhaka, Manila, 
Bangkok, Yangon, and Jakarta. All of them are overcrowded and in geographically fragile 
settings.  

Massive agglomeration notwithstanding, fewer than 50% of Asians live in cities, compared 
with 80% in Latin America. Because further urbanization would seem inevitable, it is hard to 
overstate the high priority that needs to be assigned to careful physical planning, 
environmental care, and judicious urban management.  

Third, climate action needs to be a central component of national plans. Economic growth 
will not be automatic if climate change is not dealt with. Adapting to the changing climate 
through better management of the location decisions of people and businesses and 
protecting the natural environment assumes greater urgency.  

The poor are hit hardest by the effects of climate change. Climate adaptation, including the 
building of resilient communities and peoples as well as climate mitigation, including a 
switch to a low-carbon path, are essential parts of a poverty reduction strategy in future. No 
single country can make a difference in this respect. However, Asia and the Pacific, which 
is the region most at risk, must be a powerful voice by switching to a low-carbon path and 
calling on others to do the same. 

We need to change our mindset on how growth is generated. Old-style growth at the 
expense of the environment will be self-defeating—a realization driven home by the stark 
reality of climate change. 
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Decisive action worldwide to reduce emissions is needed, but international agreements 
have remained elusive. Yet unilateral action can still be undertaken, especially when local 
gains are clear. Cutting back on black carbon emissions, especially in polluted Beijing, New 
Delhi, and Manila, makes for cleaner air, boosting overall health. 

Disaster risk management needs to be understood as an investment, going beyond relief 
and reconstruction to a dual approach of prevention and recovery. Economists can facilitate 
this understanding by building into their calculus the role of natural hazards and climate 
impacts in shaping lives and livelihoods. Factoring this into the influential growth scenarios 
could make a big difference to policy making. Climate mitigation and adaptation need to be 
seen as a vital and high return part of this approach. 
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APPENDIX 1 

 

Table A.1.  Descriptive Statistics, 1971–2013 

Variables Obs. Mean Std. Dev. Min. Max. 

Dependent Variable:  Frequency of 
intense hydrometeorological disasters 

5,830 0.715 1.694 0 25 

      

Ln (population density) 5,830 3.807 1.478 0.103 9.980 

Ln GDP per capita (constant 2005 US$) 5,830 7.728 1.490 3.913 11.124 

Square of Ln GDP per capita 5,830 61.950 23.753 15.311 123.752 

Average precipitation deviation 5,830 -1.305 13.452 -196.409 81.774 

Average temperature deviation 5,830 0.297 0.471 -1.548 2.413 

Population (million) 5,830 37.714 129.983 0.041 1,357.380 

      

Dependent Variable:  Frequency of 
Intense climatological disasters 

4,499 0.188 0.456 0 5 

      

Ln (population density) 4,499 3.841 1.381 0.103 8.785 

Ln GDP per capita (constant 2005 US$) 4,499 7.569 1.519 3.913 11.364 

Square of Ln GDP per capita 4,499 59.596 24.158 15.311 129.131 

Average precipitation deviation 4,499 -1.236 12.434 -196.409 81.774 

Average temperature deviation 4,499 0.312 0.482 -1.548 2.413 

Population (million) 4,499 46.732 146.609 0.044 1,357.380 

      

Global Variables (1970–2013)      

CO2 level  44 359.55 20.606 324.933 398.123 

CO2 deviation from level in 1970 44 26.482 20.606 -8.135 65.055 

Sea temperature deviation 44 0.098 0.195 -0.374 0.378 
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Appendix 2  
 

Co-integration Analysis 
 

In a bivariate model with 𝑦𝑡 and 𝑥𝑡variables, there exists a 𝛽 such that 𝑦𝑡 −  𝛽𝑥𝑡 is I(0) even 
though 𝑥𝑡 and 𝑦𝑡 are non-stationary processes. This means that the two variables are co-
integrated or have a stationary long-run relationship even though individually they are 
stochastic. 
 

A vector autogression (VAR) model with 𝜌 lags can be represented as shown in:  
 

𝑦𝑡 = 𝜌1𝑦𝑡−1 + 𝜌2𝑦𝑡−2 + ⋯ + 𝜌𝜌𝑦𝑡−𝑝 + 𝜑𝜏𝑡 + 𝜀𝑡                             (1) 

 

where 𝑦𝑡 is an 𝑘𝑥1 vector of I(1) variables, 𝜏𝑡 is a vector of deterministic variable and 𝜀𝑡 is an 
𝑘𝑥1 vector of identically and normally distributed errors with median zero and non-diagonal 

covariance matrix 𝛴. Given that the variables are co-integrated, equation (1) can be 
represented by an equilibrium correction model shown in (equation 2): 
 

∆𝑦𝑡 = 𝛼𝛽𝑦𝑡−𝑝 + ∑ 𝑟∆𝑦𝑡−1
𝑝−1
𝑖=1 + 𝛿𝑡 + 𝑣 + 𝜀𝑡                                     (2) 

 
Economic importance is placed on 𝛼 and 𝛽 coefficients. 𝛽 is an 𝑘𝑥𝑟 matrix of co-integrating 
vectors that explains the long-run relationship of the variables. 𝛼 is also an 𝑘𝑥𝑟 matrix that 
explains long-run disequilibrium of the variables. It is important to note that for co-integration 
to exist, matrices 𝛼 and 𝛽 should have reduced rank 𝑟, where 𝑟 < 𝑘. The identification of the 
cointegrating vector uses maximum likelihood method developed by Johansen (1988, 1995). 
The variables 𝑣 and 𝑡 are the deterministic trend component. 
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Appendix 3 
 

Estimating the Elasticities of Disasters  
with Respect to Global Climate  

 
We estimate the elasticities of disasters evaluated at the average values of the variables for 
the period 1970-2013.  The coefficient values of the time dummy variables are related to the 
global climate variables as follows: 
  

Cdt = β ∙ (Gt − G̅)                                                                       (1a)                                            
 

Where Gt is atmospheric CO2 stock level (CO2 t) or sea temperature (sea tempt), G̅ is a fixed 

level of G prevailing in 1970 for CO2 and for sea temperature its average for 1981-2000. Cdt 
represent the coefficients of the time dummy variables. The elasticity of Cdt with respect to 
Gt is: 

 
∂ln (Cdt)

∂ln (Gt)
=

∂Cdt

∂Gt
∙

Gt

Cdt
=  β̂ ∙

Gt

Cdt
                                                       (2a)    

                                     
 

For the case of CO2 the estimated β̂ is 0.0235, the mean sample value of CO2 is 359.55. and 
the mean sample value of Cdt is 0.648. Hence, the elasticity of Cdt with respect to CO2 twhen 
evaluated at the mean sample values is;  
 

∂ln (Cdt)

∂ln (Gt)
= 0.0235 ∙

359.55

0.648
= 13.03                                                      (3a) 

 
The effect of Cdt on the number of hydrometeorological disasters is 0.648. Besides, the 
number of hydrometeorological disasters for a representative country is 0.480. Hence, given 
that the dummy variables are all equal to one, the elasticity of the number of disasters with 
respect to Cdt for a representative country is, 
 

∂ln (disasterst)

∂ln (Cdt)
=

Cdt

disasterst
= 1.35                                                 (4a) 

 
 
Hence, using chain rule we have that the elasticity of disasters with respect to CO2  for a 
representative country is, 
 

∂ln (disasterst)

∂ln (CO2 t)
=

∂ln (disastersi,t)

∂ln (Cdt)
∙

∂ ln(Cdt)

∂ ln(CO2 t)
= 1.35 ∗ 13.03 = 17.60         (5a) 

 
Using expressions (2a) and (4a) one can measure the elasticities evaluated at the 2009-
2013 average levels of the variables. In this case we have that Gt = 394, Cdt = 1.86  and 

disasters= 0.775. We obtain the elasticity of disasters with respect to CO2 evaluated at 2009-
2013 values that is lower than that obtained using averages for the whole period, equal to 
11.94.  
 
Conclusion. Since CO2 levels are currently increasing by about 0.5% per year (2 ppm over 
a current level of 400 ppm) using the above result, we have that the number of hydro 
disasters may increase by about 5.9% per year. This implies that if the rate of increase of 
CO2 continues its current trend, in about 17 years the number of hydrometeorological 
disasters would double from the current average value of 0.775 to 1.55 disasters per 
country. 
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For  Indonesia, Philippines, and Thailand in the same period the elasticity of Cdt with 

respect to CO2 twhen evaluated at the mean sample values using equation (3a) is, 
  
 

∂ln (Cdt)

∂ln (CO2 t)
= 0.0235 ∙

359.55

0.648
= 13.03                                                          (6a) 

 
The effect of Cdt on the number of disasters (hydrometeorological) is 0.648. Hence, the 
elasticity of the number of disasters with respect to Cdt for a representative country is, 
 

∂ln (disasterst)

∂ln (Cdt)
=

Cdt

disasterst
= 0.14                                                      (7a) 

 
 
Hence, using chain rule we have that the elasticity of disasters with respect to CO2  for a 
representative country is, 
 

∂ln (disasterst)

∂ln (CO2 t)
=

∂ln (disastersi,t)

∂ln (Cdt)
∙

∂ ln(Cdt)

∂ ln(CO2 t)
= 0.14 ∗ 13.03 = 1.85              (8a) 

 
Similarly, using expressions (6a) and (8a) one can measure the elasticities evaluated at the 
2009-2013 average levels of the variables. In this case we have that Gt = 394, Cdt = 1.86  

and disasters= 7.2. We obtain an elasticity of disasters with respect to CO2 evaluated at 
2009-2013 values that is lower than that obtained using averages for the whole period, equal 
to 1.28.  
 
Conclusion. Since CO2 levels are currently increasing by about 0.5% per year (2 ppm over 
a current level of 400 ppm) using the above result, we have that the number of 
hydrometeorological disasters may increase by about 0.64% per year. This implies that if the 
rate of increase of CO2 continues its current trend, the number of disasters in the three 
countries there would be one more annual disaster every 20 years. 
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Global Increase in Climate-Related Disasters 

Intense climate-related natural disasters—floods, storms as well as droughts and heat 
waves have been on the rise worldwide. Is there an ominous link between the global 
increase of these hydrometeorological and climatological events on the one side and 
anthropogenic climate change on the other? This paper considers three main disaster risk 
factors—rising population exposure, greater population vulnerability, and increasing climate-
related hazards—behind the increased frequency of intense climate-related natural 
disasters. All are positively linked—with precipitation positively associated with 
hydrometeorological events and negatively associated with climatological events. Global 
climate change indicators also show positive and highly significant effects. 
 

 


