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A nonconvex separation property and some applications∗

Abstract. In this paper we proved a nonconvex separation property for general sets which coincides with the
Hahn-Banach separation theorem when sets are convexes. Properties derived from the main result are used to
compute the subgradient set to the distance function in special cases and they are also applied to extending
the Second Welfare Theorem in economics and proving the existence of singular multipliers in Optimization.
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1. Introduction

We recall that the Hahn-Banach Separation Theorem (HBT) establishes that for any
closed and convex sets Yj ⊆ IR�, j = 1, . . . , n, given yj ∈ Yj such that

∑
yj ∈

bd[
∑

Yj ], there exists p ∈ IR�, p �= 0, such that p ∈ ⋂
N(Yj , yj ), where N(Yj , yj )

is the convex analysis normal cone to Yj at yj . It is well-known that the HBT is a key
ingredient in optimization and mathematical economics among other areas. For non-
convex sets, first extensions of that theorem in a finite dimensional setting were proved
by Mordukhovich et al. ([18], [19], [20]) and by Cornet and Rockafellar ([9]). For the
history of these results and applications see [22].

In the aforementioned generalizations, the results deal with replacing convex anal-
ysis normal cone by Clarke’s normal cone ([6], [7]) or more general ones, but keeping
the sum over sets. Thus, they obtain sharper results that can be applied to more general
of sets than convexes.

The aim of this paper is to extend the aforementioned results to more general oper-
ations than the sum over sets and to use the subgradient set to the distance function
introduced by Mordukhovich in the 80’s instead of the respective cone used by the other
authors. Our paper shows that there are two main differences between our extension and
the previous mentioned: the subgradient set to the distance function is an upper semi-
continuous set-valued map and always has compact values, contained in the Clarke’s
normal cone. These facts will has remarkable consequences as it is shown in Section 3.

A. Jofré: Centre for Mathematical Modelling and Departamento de Ingenierı́a Matemática, Universidad de
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An extension of the HBT to infinite dimensional Banach spaces was proved in
Borwein and Jofré ([5]) where other applications and the relation with the extremal
principle of Mordukhovich ([18], [21]) are also included.

One of the direct applications of the main theorem proved in this paper concerns
mathematical economics, specifically about the Second Welfare Theorem (see [1], [4]
and [10] for more details). In Section 5 we give a result which allows us to associate,
in finite dimensional spaces, for each Pareto optimum point of a general nonconvex
nontransitive economy, a nonzero vector price such that each consumer and producer
will satisfy at this price, a first-order necessary condition involving the subgradient set
to the distance function to the preferences and production sets. This result corresponds
to an extension of the Second Welfare Theorem for nonconvex nontransitive economies.

Finally, applications to optimization problems, mainly the existence of singular mul-
tipliers for nonconvex optimization problems and its relation with Robinson’s qualifi-
cation condition ([26]), are also discussed in Section 6.

2. Preliminaries

Some key notions from Nonsmooth Analysis are introduced in this section. Let Z be a
subset of IR�. We will denote the boundary of Z by bdZ, its interior by intZ, its closure
by clZ and its convex hull by coZ; B(x0, r) will represent the open unit ball of IR� with
center x0 ∈ IR� and radius r > 0, and given p ∈ IR�, its transpose will be denoted by
pt . The distance function to Z is represented by dZ(·) and the inner product in IR� by
〈·, ·〉.

In this paper we will use the notion of subgradient set ([30]), which generalizes the
derivative to the case of a mapping f : IR� → ĪR ≡ IR ∪ {+∞}, f �≡ +∞, only lower
semicontinuous. For this notion, more accurate calculus rules have been recently deve-
loped in a series of papers. We refer to Ioffe ([12], [13]), Mordukhovich ([20], [23], [25])
and Rockafellar – Wets ([30]) for the sum, composition, maximum, Lagrange multipliers
rules and so on.

Given xIR� such that f (x) is finite, we will denote

f −(x; v) = lim inf
u→v
t→0+

f (x + tu) − f (x)

t

the subderivative of f at x in the direction v ∈ IR� and

∂−f (x) = {p ∈ IR� | 〈p, v〉 ≤ f −(x; v), for all v ∈ IR�}

the set of regular subgradients of f at x. If f (x) = +∞, we put ∂−f (x) = φ.
The subgradient set of f at the point x ∈ IR� is defined as

∂f (x) = lim sup
z→x

f (z)→f (x)

∂−f (z).

An element of ∂f (x) will be called a subgradient of f at x.
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Remark 1. The subgradient set of a mapping f is always contained in the well-known
Clarke’s subdifferential ∂cf (x) and it is the smallest set that satisfies certain basic calcu-
lus rules coinciding with those for the convex subdifferential when f is convex ([12]).
Moreover, if f is a locally Lipschitz mapping then ∂cf (x) = cl{co∂f (x)}.

Given Z ⊆ IR�, we define the indicator function δZ(·) of Z as

δZ(z) =
{

0 if z ∈ Z

∞ if not

and using this map we define the normal cone to Z at z as

N(Z, z) = ∂δZ(z).

The normal cone has some interesting properties related to the product and other
more complex operations over sets ([12]).

In our paper, we mainly use the following property of the subgradient set and the
normal cone (see [30]).

Proposition 1. Let Z, {Z}nj=1 be closed subsets of IR�, g : IR� → IRm and f : IRm →
IR be a lower semi-continuous mapping.

(a) If z = (z1, . . . , zn) ∈ ∏
j Zj , then N(

∏
j Zj , z) = ∏

Nj(Zj , zj ).

(b) Given z ∈ Z and an open convex neighborhood U of z, follows that

N(Z ∩ U, z) = N(Z, z).

(c) If f attains a minimum at x̄ then 0 ∈ ∂f (x̄).

(d) If f is continuously differentiable at g(x̄) then

∂(f ◦ g)(x̄) ⊆ ∂[〈D, g(·)〉](x̄),

where D is the derivative of f at g(x̄).

3. A nonconvex separation property

It is well-known that separation properties such as the HBT are among key ingredients
in nonsmooth optimization and mathematical economics. Our aim in this section is to
extend this property to a nonconvex setting. The main result of this section is Theorem
1 which is an extension of a property proved by Cornet and Rockafellar in 1989 ([9]).

Theorem 1. Let f : IRn� → IR� be a locally Lipschitz mapping and {Zj }nj=1 a family

of closed and nonempty sets in IR�. If z̄ := (z̄1, · · · , z̄n) ∈ Z1 × · · · × Zn satisfies the
condition f (z̄) ∈ bd[f (Z1, . . . , Zn)], then there exists p ∈ IR�, p �= 0, such that

0 ∈ ∂(ptf )(z̄) +
n∏

j=1

∂dZj
(z̄j ),

and 0 < c ≤ ‖p‖ ≤ 1, where c depends only on z̄1, . . . , z̄n.



A. Jofré, J.R. Cayupi

Proof. Given f (z̄) ∈ bd [f (Z1, . . . , Zn)], there exists a sequence (uk) ⊂ IR� such that
(uk) → f (z̄), with uk /∈ f (Z1, . . . , Zn). Given z := (z1, . . . , zn), let us now consider
the optimization problem [Pk] which consists in minimizing fk over Z1 × · · · × Zn,
where

fk(z) = ||f (z) − uk|| +
n∑

j=1

||zj − z̄j ||2.

From the fact that

fk(z) ≥ φ(z) :=
n∑

j=1

||zj − z̄j ||2

and lim
‖z‖→+∞

φ(z)
‖z‖ = +∞, we can readily conclude the coercivity of fk uniformly in

k ∈ IN . Therefore, there exists M > 0 (which does not depend on uk) such that for
each k ∈ IN there exists at least one solution zk := (zk

1, . . . , z
k
n) ∈ B(0, M) ∩ �jZj for

problem [Pk].
Because of fk is Lipschitz on the closed ball clB(0, 2M), if we denote by L ≥ 0

its Lipschitz constant on this ball (that can be chosen independently of k ∈ IN and be
assumed strictly positive), from Clarke [7], Prop. 2.4.3, it follows that zk is a minimizer
of fk(·) + LdB(0,M)∩�Zj

(·, . . . , ·) over the ball B(0, 2M).
From the first order optimality condition using subgradient set and the calculus rules

for it ([12], Prop. 1.1) we obtain

0 ∈ [∂fk(z
k
1, . . . , z

k
n) + ∂LdB(0,M)∩�Zj

(zk
1, . . . , z

k
n) + N(B(0, 2M), (zk

1, . . . , z
k
n))],

and then, due to N(B(0, 2M), (zk
1, · · · , zk

n)) = {0}, we can conclude that

0 ∈ ∂fk(z
k
1, . . . , z

k
n) + L�j∂dZj

(zk
j ).

By applying the composition rule for the subgradient set to this case (Prop. 1 (d))
and considering that ‖ · ‖ is a continuously differentiable function around f (zk) − uk ,
we can infer that

∂fk(z
k
1, · · · , zk

n) ⊆ ∂(pt
kf )(zk

1, . . . , z
k
n) + 2(zk

1 − z̄1, . . . , z
k
n − z̄n),

where

pk = f (zk
1, . . . , z

k
n) − uk

‖f (zk
1, . . . , z

k
n) − uk‖

.

Let p̄ ∈ IR� be an accumulation point of (pk). Without loss of generality we may
assume that (pk) → p̄, with p̄ �= 0 due to for every k ∈ IN , ‖pk‖ = 1. Let L̄ be the
Lipschitz constant of f on B(0, 2M). Thus,

∂(pt
kf )(zk) ⊆ ∂((pk − p̄)tf )(zk) + ∂(p̄tf )(zk) ⊆ ‖pk − p̄‖L̄B + ∂(p̄tf )(zk),
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and therefore

0 ∈ ‖pk − p̄‖L̄B + ∂(p̄tf )(zk) + 2(zk
1 − z̄1, . . . , z

k
n − z̄n) + L

n∏

j=1

∂dZj
(zk

j ) [∗].

On the other hand, note that the optimal value vk of [Pk] satisfies

vk = ‖f (zk) − uk‖ +
n∑

j=1

||zk
j − z̄j ||2 ≤ ‖f (z̄) − uk‖,

which implies (vk) → 0 when k → ∞. Therefore, for every j = 1, . . . , n, (zk
j ) → z̄j ,

and from [∗] and the closedness of the subgradient set as a set-valued map, we deduce
that

0 ∈ ∂(p̄tf )(z̄) + L

n∏

j=1

∂dZj
(z̄j ).

Finally, considering that ‖p̄‖ = 1, if we set p ≡ 1
L
p̄ and c = 1

L
> 0 we obtain the

desired result.

Remark 2. Wherever sets Zj are not closed sets, follows that if for each j = 1, . . . , n,

z̄j ∈ clZj and f (z̄1, . . . , z̄n) ∈ bd[f (clZ1, . . . , clZn)], from Theorem 1, exists p ∈
IR�, p not equal to zero, such that

0 ∈ ∂ptf (z̄1, . . . ., z̄n) +
n∏

j=1

∂dZj
(z̄j ).

Remark 3. Given that f in Theorem 1 is locally Lipschitz, ∂(ptf )(z̄) = D∗f (z̄)(p),
where D∗f (z̄)(p) is the coderivative of f at z̄ in the direction p ∈ IR�, that is,
D∗f (z̄)(p) := {y ∈ IR� | (y, −p) ∈ N(graph(f ), (z̄, f (z̄)))} (we refer to [20], [21]
and [30] for more details).

A particular case of Theorem 1 is when f : IRn� → IR� is separable, that is, there
are n ∈ IN mappings fj : IR� → IR� such that for every zj ∈ IR�, j = 1, . . . , n,

f (z1, . . . , zn) =
n∑

j=1

fj (zj ).

By abuse of language, fj will be called a component of f . For this particular case,
we have the following corollary.

Corollary 1. Under the assumptions of Theorem 1 and assuming that f is separable
and such that its components fj are locally Lipschitz, then there exists p ∈ IR�, p �= 0,

such that for all j = 1, . . . , n

0 ∈ ∂ptfj (z̄j ) + ∂dZj
(z̄j ).
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Proof. From Theorem 1 exists p ∈ IR�, p �= 0, such that

0 ∈ ∂(ptf )(z̄1, . . . , z̄n) + ∂d�Zj
(z̄1, . . . , z̄n).

Now on, from the fact that ∂(ptf )(z1, . . . , zn) ⊆ ∏
j ∂(ptfj )(zj ) ([30]), we can

readily conclude the assertion. ��

In the smooth case a more explicit formula involving vector p can be elaborated as
the following corollary show us.

Corollary 2. (a) Let f : IRn� → IR� be a separable and continuously differentiable
mapping with components fj : IR� → IR�, j = 1, . . . , n, and let Z1, . . . , Zn be a
family of closed and nonempty sets in IR�. Given a point (z̄1, . . . , z̄n) ∈ ∏

j Zj such
that

f (z̄1, . . . , z̄n) =
n∑

j=1

fj (z̄j ) ∈ bd [f (Z1, . . . , Zn)]

there exists p ∈ IR�, p �= 0, such that for every j = 1, . . . , n

ptDfj (z̄j ) ∈ ∂dZj
(z̄j ),

where Dfj (z̄j ) is the Fréchet derivative of fj at z̄j .
(b) Let Zj , j = 1, . . . , n, as above. Given a point (z̄1, . . . , z̄n) ∈ Z1, . . . , Zn such that∑

j z̄j ∈ bd[
∑

j Zj ], there exists p ∈ IR�, p �= 0, such that

p ∈
⋂

j

∂dZj
(z̄j ).

Proof. (a) Due to fj is continuously differentiable, ∂fj (z̄j ) = {Dfj (z̄j )} and thus the
result follows directly from Corollary 1.

(b) This part is a direct consequence of part (a) when fj is the identity function in IR�.
��

Remark 4. We point out that Corollary 2 (a) is equivalent to the extremal principle of
Mordukhovich et al. ([18], [20], [23], [24], [25]) when ∂dZj

(z̄j ) is replaced by the larger
set N(Zj , z̄j ).
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The following picture give us a geometrical interpretation of Corollary 2 (b).

z

b

a

b'

a'

b''

A = portion un the unit disk

A

B =  R  x {0}+

B

From the picture above, we have that z = (0, 0) ∈ bd[A−B] and ∂dA(z) = {a, a′},
∂dB(z) = {semicircle defined by {b, b′, b′′}}. Clearly a ∈ ∂dA(z) and −a ∈ ∂dB(z)

(see Lemma 2).
Next picture provide us another example for our result. There, we consider f : IR →

IR, such that f (x) = x2
∣
∣sin( 1

x
)
∣
∣ , x �= 0, f (0) = 0.

+1-1

A

0

ba

B = [-1, +1] x {0}

A = epi(f)

B

When we compute the subgradient set to the distance function to A = epi(f )

(epigraph of f ) at (0, 0) yields the portion of the unit ball enclosed by the vectors

a =
(

−√
2

2 , −√
2

2

)
and b =

(√
2

2 , −√
2

2

)
and the subgradient set to the distance func-

tion to set B at the same point yields {(0, −1), (0, 1)}. Clearly 0 ∈ bd[A + B] and
b = (0, −1) ∈ ∂dA(0) ∩ ∂dB(0).

Remark 5. It is known ([27]) that given two lower semi-continuous and proper con-
vex functions f1, f2 : IR� → IR, if x ∈ dom(f1) ∩ dom(f2) then ∂(f1 + f2)(x) =
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∂f1(x) + ∂f2(x), provides that 0 ∈ int[dom(f1) − dom(f2)]. If this last condition is
not satisfied, follows that

0 ∈ bd[(cl dom(f1) − {x}) − (cl dom(f2) − {x})],

and from Corollary 2 (b) we conclude N(domf1, x)
⋂

N(domf2, x) �= {0}. Thus, using
Corollary 2 we can recover the well-known alternative property in Convex Analysis as
it is detailed in [27].

We end this section with a stability type of result for our nonconvex separation prop-
erty. To do so, let f : IRn� → IR� be a locally Lipschitz mapping defined on the product
of closed sets Z1, . . . , Zn ⊆ IR� and let z̄s := (z̄1,s , . . . , z̄n,s) ∈ Z1 × · · ·×Zn, s ∈ IN ,
be a convergent sequence ((z̄s) → z̄) such that for each s ∈ IN

f (z̄1,s , . . . , z̄n,s) ∈ bd[f (Z1, . . . , Zn)].

Finally, let (ps) from Theorem 1 such that

0 ∈ ∂(pt
sf )(z̄s) +

n∏

j=1

∂dZj
(z̄j,s).

Lemma 1. If (ps) → p̄, then p̄ �= 0 and

0 ∈ ∂(p̄tf )(z̄) +
n∏

j=1

∂dZj
(z̄j ).

Proof. Let us consider the optimization problem
[
Pk,s

]
that consists of minimizing

function fk,s(z1, . . . , zn) = ||f (z1, . . . , zn) − uk,s || + ∑
j ||zj − z̄j,s ||2 over the set

Z1 × · · · × Zn, where the sequence (uk,s) → f (z̄1,s , . . . , z̄n,s) corresponds to the
sequence (uk) → f (z̄1, . . . , z̄n) used in the proof of Theorem 1. From Theorem 1
we already know that there exists 0 < cs such that cs ≤ ‖ps‖. Note that cs = 1

Ls
,

where Ls > 0 is the Lipschitz constant of fk,s , which only depends on {z̄s}. Because of
fk,s(z1, . . . , zn) ≥ ∑

j (||zj ||2 − 2||zj ||||z̄j,s ||), from the boundedness of z̄s , s ∈ IN,

we can deduce that exists r > 0 (only depending on z̄) such that for every s ∈ IN ,

fk,s(z1, . . . , zn) ≥
n∑

j=1

(||zj ||2 − 2r||zj ||).

Last fact implies that we can consider the Lipschitz constant of fk,s only depending
of z̄. Let L̄ be this constant. In consequence, there exists 0 < d̄ such that for every
s ∈ IN , d̄ ≤ cs ≤ ‖ps‖, hence lims ps := p̄ �= 0. Now, from the closedness of the
subgradient set and the fact that

∂(pt
sf )(z̄s)) ⊆ ∂((ps − p̄)tf )(z̄s) + ∂(p̄tf )(z̄s) ⊆ ‖ps − p̄‖L̄B + ∂(p̄tf (z̄s)),

we can readily deduce the conclusion of Lemma 1. ��
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In what follows, we will consider a sequence of closed sets Zi,k ⊆ IR�, i ∈
{1, . . . , n}, k ∈ IN . Let zi,k ∈ Zi,k be such that

∑
i zi,k ∈ bd[

∑
i Zi,k]. In this

case, from Corollary 2 (b), given k ∈ IN there exists pk ∈ IR�, pk �= 0, such that
pk ∈ ⋂

i ∂dZi,k
(zi,k). Assuming that for each i ∈ {1, . . . , n}, (zi,k) →k zi , our problem

consists now in to find general conditions in order to guarantee the existence of a vector
p ∈ IR�, p �= 0, satisfying p ∈ ⋂

i ∂dZi
(zi), where Zi is a “limit set” of the family

Zi,k .

Proposition 2. Let Zi,k be a family of closed sets in IR� and zi,k ∈ Zi,k , i ∈ {1, . . . , n},
k ∈ IN , such that

∑
i zi,k ∈ bd[

∑
i Zi,k]. If for every i ∈ {1, . . . , n}

lim sup
k

∂dZi,k
(zi,k) ⊆ ∂dZi

(zi),

then there exists p ∈ IR�, p �= 0, such that

p ∈
⋂

i

∂dZi
(zi).

Proof. Let (pk) satisfying the conclusion of Corollary 2 (b). Without loss of generality
we may assume that pk is convergent (we set p ∈ IR� as the limit). From Lemma 1
we deduce that p �= 0 and then, from the hypotheses we can conclude that for each
i ∈ {1, . . . , n}, p ∈ ∂dZi

(zi). ��
Some sufficient conditions which imply that lim supk ∂dZi,k

(zi,k) ⊆ ∂dZi
(zi) are,

for example ([2], [11]),

(a) the distance functions dZi,k
(·), dZi

(·) are convexe and dZi,k
(·) pointwise converges

to dZi
(·) when k → ∞,

(b) the sets Zi,k and Zi are convexe and the family {Zi,k} converges to Zi in the sense
of Kuratowski-Painlevé1,

(c) Zi,k and Zi are convexe and dZi,k
epi-converges to dZi

, that is, the convergence of
the respective epigraphs in the sense of Kuratowski-Painlevé.

(d) the sequence of distance functions dZi,k
satisfy both epi − lim dZi,k

= dZi
, i ∈

{1, . . . , n} and they are equi-lower semidifferentiable, which means that for every
open set V ⊆ IR�, dZi,k

(y) ≥ dZi,k
(x)+pt (y −x)+o(‖x −y‖) holds true for each

k ∈ IN , x, y ∈ V and p ∈ ∂−dZi,k
(x) (we refer to [11] for more details).

4. Formula to compute the subgradient set to the distance function in special cases

The main objective of this section is to provide a formula that help us to compute the
subgradient set to the distance function to a set defined by equalities and inequalities of
functions. To do so, in order to obtain a “reasonable” formula for this subgradient, we
are enforced to assume some conditions on the mappings that define our set. Thus, let
g : IRm → IRn be a mapping such that for all y ∈ IRm, g(y) = (g1(y), . . . , gn(y)) =
(gi(y)), where gj , j = 1, . . . , n, are real-valued functions. Following definition was
taken from [8] and [26].

1 That is, lim sup
k

Zi,k := {x ∈ IR� | ∃ (xk′ ) → x, xk′ ∈ Zi,k′ } = lim inf
k

Zi,k := {x ∈ IR� | ∀ k ∈ IN ∃ xk ∈
Zi,k, (xk) → x}.
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Definition 1. Function g : IRm → IRn satisfies the metric regularity condition at
y0 ∈ IRm with respect to D ⊆ IRn if g(y0) ∈ D and if there exist k > 0 and ε > 0 such
that for all y ∈ B(y0, ε)

dg−1(D)(y) ≤ k · dD(g(y)),

where g−1(D) denotes the inverse image under g of D ⊆ IRn.

Remark 6. We recall that if g is continuously differentiable, the Robinson constraint
qualifications condition ([8], [26]) implies the metric regularity as before. Specifically,
if D = −IR

p
+ ×{0IRq }, with n = p+q, sufficient conditions to guarantee the metric reg-

ularity condition are, for example, the Mangasarian - Fromovitz constraint qualification
condition and the Slater condition in the convex case.

Proposition 3. If g : IRm �→ IRn is a locally Lipschitz function satisfying the metric
regularity condition at y0 ∈ IRm with respect to D ⊆ IRn, with constant k > 0, then

∂dg−1(D)(y0) ⊆
⋃

y∈∂dD(g(y0))

k ∂(y ◦ g)(y0).

Proof. From the metric regularity condition and the subderivative concept, it follows
that for some ε > 0

d−
g−1(D)

(y; h) ≤ k(dD ◦ g)−(y; h),

for every h ∈ IRm and y ∈ B(y0, ε) ∩ g−1(D). Hence, from the definition of the
subgradient set,

∂dg−1(D)(y0) ⊆ k∂(dD ◦ g)(y0)

and then, applying the chain rule for the subgradient set to the above relationship ([12],
Corollary 5.3) we obtain the desired result. ��

Coming back to our initial motivation for this section, let Y ⊆ IRm be a set defined
by equalities and inequalities of mappings, that is,

Y = {y ∈ IRm | gi(y) ≤ 0, i = 1, 2, . . . , p; gp+j (y) = 0, j = 1, 2, . . . , q},
with gi : IRm → IR, i = 1, 2, . . . , p + q. Set n = p + q and G : IRm → IRn with
G(y) = (gi(y)) ∈ IRn. Given all foregoing, we point out that

Y = G−1(D)

with D = −IR
p
+ × {0IRq }.

Corollary 3. Suppose that G is locally Lipschitz and satisfies the metric regularity con-
dition at y0 ∈ IRm with respect to D = −IR

p
+ × {0IRq }, with constant k > 0. In such

case, we have that

∂dY (y0) ⊆ k
⋃

y∈[0,1]p×[−1,1]q

n∑

i=1

∂[yigi](y0).
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Proof. First of all, note that

∂dD(G(y0)) =
p∏

i=1

∂d{−IR+}(gi(y0)) ×
p+q∏

i=p+1

∂{0}(gi(y0)) = [0, 1]p × [−1, 1]q

and then, from Proposition 3 follows that

∂dG−1(D)(y0) ⊆ k
⋃

y∈[0,1]p×[−1,1]q
∂

n∑

i=1

[yigi](y0),

and therefore

∂dG−1(D)(y0) ⊆ k
⋃

y∈[0,1]p×[−1,1]q

n∑

i=1

∂[yigi](y0),

which ends the demonstration. ��
Finally, we conclude this section with the following lemma, which will be useful in

Section 5.

Lemma 2. Given a subset Y ⊆ IR� and y0 ∈ IR�, we have that

∂d−Y (y0) = −∂dY (−y0),

which implies that N(−Y, y0) = −N(Y, −y0).

Proof. Given y0 ∈ IR� and Y ⊆ IR�, note that dY (−y0) = d−Y (y0). Now, from the fact
that dY (−y0) = [dY ◦ −Id](y0), applying the composition rule ([13], Theorem 4.3) to
this case, we can deduce that

∂dY (−y0) =
⋃

p∈∂dY (−y0)

∂[p ◦ −Id](y0) = −∂dY (−y0),

and then, due to N(Y, y0) = cl{IR+∂dY (y0)}, from the relationship just proved for the
distance function we can readily conclude the assertion. ��

5. A mathematical economics application

Let us consider an economy with � goods, m consumers and n producers. We denote
by Xi ⊆ IR� the consumption set of individual i ∈ I = {1, . . . , m}. For each con-
sumption bundle (x̄1, . . . , x̄m) ∈ ∏

Xi , Pi(x̄) = Pi(x̄1, . . . , x̄n) ⊆ Xi will represents
those elements of Xi strictly preferred to x̄i by the consumer i ∈ I and clPi(x̄) =
clPi(x̄1, . . . , x̄m) those elements preferred or indifferent to x̄i by this individual. Thus
Pi :

∏
Xk �→ Xi is a set-valued map which generalizes the preorder of preferences and

the utility function concept on Xi for the respective consumer. It is important to recall
that any hypotheses of transitivity have been assumed on the preferences correspondence
(for more details on the model, see [4], [10]).
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The production set of a firm j ∈ J = {1, . . . , n} is represented by a nonempty set
Yj ⊆ IR�, and finally w ∈ IR� denotes the total initial endowments of resources2.

We define an economy E as

E = ((Xi), (Pi), (Yj ), w).

A feasible allocation for the economy E will be a point ((x̄i), (ȳj )) ∈ IR�m × IR�n

such that:

(a) x̄i ∈ Xi , for all i ∈ I ; ȳj ∈ Yj , for all j ∈ J ;
(b)

∑
i∈I x̄i − ∑

j∈J ȳj = w.

A feasible allocation ((x̄i), (ȳj )) ∈ IR�m × IR�n for the economy E is said to be a
Pareto optimum if there is no other feasible allocation ((xi), (yj )) such that for every
i ∈ I , xi ∈ clPi(x̄), and for some i0 ∈ I , xi0 ∈ Pi0(x̄) ([4]).

With very general hypotheses on the economy E is possible to prove that for each
Pareto optimum point there exists a nonzero vector price which “decentralizes” it, that
is, a vector price that together the Pareto optimum distribution conforms an equilibrium
point for the economy (see [4], [10] and [15]). This result is known as the Second Welfare
Theorem.

In what follows, using our main result, we will prove a general version of the Second
Welfare Theorem. To do that, we will introduce the so called “Asymptotically Included
Condition” ([15]). We say that the economy E = ((Xi), (Pi), (Yj ), w) satisfies the
Asymptotically Included Condition at the point ((x̄i), (ȳj )) ∈ IR�m × IR�n if there exists
i0 ∈ I , ε > 0 and a nontrivial sequence (hk) → 0 such that for a large enough k ∈ IN

we have that

−hk + �iclPi(x̄) ∩ B(x̄i, ε) − �jYj ∩ B(ȳj , ε) ⊆ Pi0(x̄) + �i �=i0clPi(x̄) − �jYj .

Some hypotheses which imply this condition are, for example (see [15] for more details),

(a) for some i0 ∈ I , Pi0(x̄) is a closed set,
(b) for some i0 ∈ I , Pi0(x̄) is convex with nonempty interior,
(c) there exists a nontrivial sequence (hk) → 0 such that for some i0 ∈ I and k ∈ IN

(sufficiently large), −hk + clPi0(x̄) ⊆ Pi0(x̄),
(d) there exists i0 ∈ I such that for every x ∈ clPi0(x̄), x + IR�++ ⊆ Pi0(x̄).

Theorem 2. Let ((x̄i), (ȳj )) ∈ IR�m × IR�n be a Pareto optimum point for economy
E = ((Xi), (Pi), (Yj ), w) such that for each i ∈ I , x̄i ∈ clPi(x̄). If the Asymptotically
Included Condition holds true, then there exists a nonzero vector price p̄ ∈ IR� such
that

p̄ ∈
n⋂

j=1

∂dYj
(ȳj ) − p̄ ∈

m⋂

i=1

∂dclPi (x̄)(x̄i ).

2 If each individual i ∈ I is initially endowed with resources wi ∈ IR�, then w = ∑
i wi ∈ IR�.
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Proof. From the Pareto optimum definition and the Asymptotically Included Condition,
we can readily deduce (see [15] for more details) that for some ε0 > 0, w ∈ bd	(ε0),
with

	(ε0) :=
m∑

i=1

clPi(x̄) ∩ B(x̄i, ε0) +
n∑

j=1

−Yj ∩ B(ȳj , ε0).

Given that, Theorem 2 can be obtained as a direct consequence of Corollary 2 (b)
and Lemma 2 applied to sets clPi(x̄) ∩ B(x̄i, ε0), i ∈ I, and Yj ∩ B(ȳj , ε0), j ∈ J . ��

6. Optimization application: the Robinson qualification condition

In this section we show an easy way to prove the existence of singular multipliers for an
optimization problem. To do so, let K ⊆ IRm be a closed set and consider the minimi-
zation problem [P ] defined by

{
min f (x)

G(x) ∈ K

where f : IR� → IR and G : IR� → IRm are continuously differentiable mappings.
For this optimization problem, the Robinson qualification condition ([26]) at an optimal
solution x ∈ IR� is

0 ∈ int[G(x) + DG(x)IR� − K], (1)

where DG(x)IR� is the linear space generated by the derivative DG of G at x. This
regularity condition coincides with the classical Mangasarian - Fromovitz condition
when K is defined by equalities and inequalities. When K is a convex set, the Robinson
condition implies the existence of a Karush - Kuhn - Tucker multiplier vector ([3]), that
is, a vector p ∈ IRm, p �= 0, such that p ∈ N(K, G(x)), G(x) ∈ K and DL(x, p) = 0,
where L(x, p) = f (x) + ptG(x) is the Lagrangian function of problem [P ].

Now we analyze the case when (1) is not satisfied. For this purpose, we define
Z1 = G(x)−K ⊆ IRm and Z2 = DG(x)IR�. Since x is a feasible point and DG(x)IR�

is a linear space, we have that 0 ∈ Z1
⋂

Z2 and then, if (1) is not true, follows that

0 ∈ bd[Z1 + Z2].

In such case, from Corollary 2 (b) holds that there exists p ∈ IRm, p �= 0, such that

p ∈ N(G(x) − K, 0) p ∈ N(DG(x)IR�, 0).

From Lemma 2 and considering a translation of the normal cone N(G(x) − K, 0)

in −G(x) we can deduce that −p ∈ N(K, G(x)) and also, from the fact that p ∈
N(DG(x)IR�, 0) we infer that ptDG(x) = 0. Thus, with all foregoing we have proved
the following proposition.

Proposition 4. Let us consider the optimization problem [P ] with the assumptions given
above. If x is an optimal solution of [P ] then, either
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(a) 0 ∈ int[G(x) + DG(x)IR� − K] and there exists p ∈ IRm, p �= 0, such that
p ∈ N(K, G(x)), G(x) ∈ K and DL(x, p) = 0, where L(x, p) = f (x)+ptG(x)

(existence of a Karush - Kuhn - Tucker multiplier vector for problem [P ]),
or

(b) 0 /∈ int[G(x) + DG(x)IR� − K] and there exists p ∈ IRm, ‖p‖ = 1, such that
−p ∈ N(K, G(x)) and ptDG(x) = 0.

Remark 7. (a) Condition −p ∈ N(K, G(x)) is the complementary slackness condition
for problem [P ]. Note that if K is convex, for every k ∈ K , 〈p, G(x) − k〉 ≤ 0,
which implies that when K is a cone with its vertex at 0, 〈p, G(x)〉 = 0.

(b) The condition 〈DG(x), p〉 = 0 shows us the existence of a singular multiplier for
problem [P ].

(c) Proposition 4 could be also obtained for more general functions f, G. For that, see,
for example, Ioffe ([12]), Jourani and Thibault ([16], [17]), Mordukhovich and Shao
([23], [24], [25]) and Rockafellar ([29]).
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