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Abstract 

 
The present paper builds on the work of Caselli, Esquivel and Lefort 
(1996) where growth equations are estimated using the Generalized 
Moment Method. It is shown here that the results of those authors are 
biased due to a methodological problem. The convergence rate of 
around 12% that they report is overestimated and the real rate is in fact 
around 3 or 4 %; in line with earlier studies. The results found are robust 
to various new dynamic panel estimation techniques, although the 
significant differences are indicated when making inferences if variance 
corrections are not considered for estimators that use the Generalized 
Moment Method. 
 
Key words: Convergence, GMM, Kiviet Correction. 
 

Resumen 

 
 
El trabajo actual se apoya en el trabajo de Caselli, Esquivel y Lefort 
(1996) donde las growth equations son calculadas usando the 
Generalized Moment Method. Es mostrado que aquí que los resultados 
de esos escritores son parciales debido a un problema metodológico. 
La tasa de convergencia próxima a 12 % informada por los autores es 
sobreestimado y la tasa real es, de hecho, en torno de 3 o 4 %; en 
concordancia con estudios más tempranos.  
Los resultados encontrados son robustos para new dynamic panel 
estimation techniques, although the significant differences are 
indicated when making inferences if variance corrections are not 
considered for estimators that use the Generalized Moment Method. 
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Resumen

The present paper builds on the work of Caselli, Esquivel and Lefort
(1996) where growth equations are estimated using the Generalized Mo-
ment Method. It is shown here that the results of those authors are biased
due to a methodological problem. The convergence rate of around 12% that
they report is overestimated and the real rate is in fact around 3 or 4%; in
line with earlier studies. The results found are robust to various new dy-
namic panel estimation techniques, although the significant differences are
indicated when making inferences if variance corrections are not considered
for estimators that use the Generalized Moment Method.

Key words: Convergence, GMM, Kiviet Correction.

1. Introduction

One of the most important neoclassical growth implications is that coun-

tries converge to a steady state growth condition. The empirical testing of this

hypothesis has only offered evidence of conditional convergence; meanwhile ab-

solute convergence has been rejected. Nevertheless, the debate remains open, as
*Department of Economics. University of Chile. The authors would like to express their

gratitude to Claudio Soto for his comments, and Jose Luis Contreras and Jorge Hermann for
providing the programs used in this work. All errors are the sole responsibility of the authors.
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new estimation techniques suggest that earlier results may change significantly.

One of the most notable works in this respect has been that of Caselli, Esquiv-

el and Lefort (1996), who, by employing dynamic panels, found the convergence

rate to be around 10%, as opposed to the 2% approximate rate found by Barro

and Sala-i-Martin previously. This result is due to the use of new econometric

techniques which are expected to solve endogeneity problems, omitted variable

and inconsistency of estimator bias.

The main objective of the present study is to test the evidence given by Caselli,

Esquivel and Lefort (1996) for robustness by applying new dynamic panel esti-

mation methods. In other words, we seek to discover if the 10% convergence rate

found by these authors holds. If this were the case, the result that, with a 10%

rate, countries would habitually find themselves near their steady state would

become more robust.

It is shown here that the results of those authors are biased due to a method-

ological problem. The convergence rate of around 12% that they report is overes-

timated and the real rate is in fact around 3 or 4%; in line with earlier studies. The

results found are robust to various new dynamic panel estimation techniques, al-

though the significant differences are indicated when making inferences if variance

corrections are not considered for estimators that use the Generalized Moment

Method.

Concordantly, the present study is organized as follows: There is a brief review

of growth literature in section two; the methodology and data used is presented

in section three; the results are presented in section four and the conclusion in
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section 5.

2. Literature

Empirical economic growth studies generally start with a variant of the fol-

lowing general specification:

ln(Yit)− ln(Yit−τ ) = κ + β ln(Yit−τ ) + Wit−τδ + ηi + ζt + εit (1)

Where Yit is per capita GDP, in country i in the period t, , Wit−τ is a file vector of

economic growth determinants, ηi is the fixed component specific to each country,

ζt is a constant specific to each period, and εit is the error term.

These types of equations used in cross-section estimates are referred to as the

Barro regressions. Barro and Sala-i-Martin (1990) prove the existence of condi-

tional convergence for the U.S.A. at a rate of around 2,5% in the period 1840-

1988. They also find evidence of a conditional convergence rate of around 2,0% a

year for a sample of 98 countries, in the period 1960-1985, calculated using least

squares regressions. The problem with these results is that the non-observable

individual effect is treated inadequately, since it should not be correlated to the

other variables on the right-hand side, but in fact is. There is also a problem with

the endogeneity of the regressors used.1

Caselli, Esquivel and Lefort (1996) introduced a new methodology in the study

of economic growth and convergence, based on the estimation of dynamic data

panels, which corrects endogeneity, omitted variable and consistency problems.

By this, they induce a jump in the estimation of the convergence coefficient from

2% to 10%annually approximately, which implies that economies are always near

their steady state. Of course, they use the same sample and period as Barro and
1This will be explained in greater detail in the Methodology section
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Sala-i-Martin (1990). This is also the case in the estimation of the simple Solow

model and its augmented version, with variables such as initial income, average

years of secondary schooling for men and women, life expectancy index logarithm,

political assassinations, terms of trade among others. The Hausman test rejects

the strict exogeneity of each set of variables for both models. As such, consistent

parameters are obtained through the new technique.

Meanwhile, in his study on Chilean economic growth using the panel data

methodology, Lefort (1997) gives an adequate treatment to the individual non-

observable effects and to the endogeneity problems characteristic of these cross-

section studies and finds that the increase in Chilean growth rates is mainly due

to the direct effects of the economic reforms on the macro-economic variables,

such as increase in investment, opening of the economy and greater efficiency

of the financial system. Furthermore, he shows that the effect arising from the

variation of the individual component not explained by other variables is insignif-

icant in the Chilean case, and stands at around 1.6%, which would imply that

we converge on a not very high per capita income level. The convergence rate

estimated through least squares regressions is 2.3% and around 9% for GMM,

which demonstrates the significant difference produced by the new methodology.

One of the last studies aimed at improving convergence results is Bond et al.

(2001) which describes the general form of the approximation made by Casel-

li, Esquivel and Lefort (1996), stating the equation for regression as a model of

dynamic data panels. It takes the first differences, removing the specific non-

observable effect of each country and holding constant over time the instrument

used as a variable in the right side, with lagged series of two periods or more

in levels, under the assumption that the temporal variation of the errors in the
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original equation in levels are not serially correlated. This permits consistent es-

timators to be obtained. The problem with this method is that when the time

series are persistent and the number of observations is small, the first stage GMM

estimator behaves poorly. Hence, using the estimator suggested by Arellano and

Bover (1995) and Blundell and Bond (1998) they show that the results of the

convergence coefficient are significantly lower than that found by Caselli, Esquiv-

el and Lefort (1996), since it solves the bias problems of the first stage GMM

estimator.

In summary, one may say that recent empirical studies have concentrated on

dynamic panel techniques.2

3. Methodology

The previous section offered a brief overview of empirical growth studies. The

common aspect of these studies is that they use the Solow-Swan model as the

base, where savings rates, as well as population growth rates are exogenous. An

aggregate production function is assumed with effective work and capital stock

arguments. The growth rate behavior of countries around the steady state is given

by the following expression:

ln(Yi,t)− ln(Yi,t−τ ) = −(1− exp−λτ )(Yi,t−τ )+ (2)

(1− exp−λτ )
α

1− α
[ln(s)− ln(n + g + d)] + ηi + εi,t

where

λ = (n + g + d)(1− α) (3)
2It should be noted that there is a large body of literature on heterogeneous dynamic pan-

els. In the present paper, we concentrate on homogenous panels that also satisfy the steady

state/seasonality assumption.
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with n is the population growth rate, g is the productivity-enhancing techno-

logical development rate, d is the fixed capital depreciation rate, α is the fixed

capital depreciation rate and s is the savings rate. λ is the convergence coeffi-

cient that measures the velocity at which countries converge to their steady state

product level.

We know that one way of testing the Solow growth model, and to discover whether

there is convergence or not, is by estimating a growth equation of the following

type

∆yit = βyit−r + γsit−r + (ηi + εit) |β| < 1 , r > 1 (4)

where ∆yit is per capita income growth, which is accounted for by the initial

income level yit−r, and by variables that serve to characterize the steady state of

the economy. The assumption |β| < 1, demonstrates that we are working with

steady state panels. Concordantly, the lag should be greater than one, given that

if r = 1, the problem of testing convergence in the previous equation is reduced

to proving the existence of unit root3. There are various forms for estimating (4),

from the least squares regressions estimator to the Generalized Moment Method

(henceforth referred to as GMM). Note that (4) may be estimated equivalently

as

yit = β̃yit−1 + γsit−r + (ηi + εit) (5)

If the least squares regression or within group estimator (henceforth referred to as

WG) is used, the estimators are taken as inconsistent since they do not consider

the problem of serial correlation that exists between the lagged dependent variable
3It should be noted that Harris and Tzavalis (1999) developed a unit root test when the

panel assumes a fixed T and N→∞
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yit−τ and the error term εit. The methodology for obtaining consistent estimators

is GMM. A brief description of these methodologies that are used throughout this

study is outlined below.

3.1. The Arellano and Bond method

For the sake of simplicity, we shall assume that the model in which we are

interested is given by4

yit = αyit−1 + ηi + εit i = 1....N t = 2.....T (6)

If we take the first difference of (6), to eliminate the term η the following is

obtained:

∆yit = α∆yit−1 + ∆εit i = 1.....N, t = 3......T (7)

Arellano and Bond (1991) propose estimating the model above using GMM. The

moment conditions considered are as follows:

E(∆εityit−s) = 0 i = 1 . . . N ; t = 3 . . . T ; s = 2 . . . t− 1 (8)

where, based on the above, the availability of these is determined by m =

(T−1)(T−2)
2

. Stating the above conditions in matricial/matrix terms we have:

E(Z ′
i∆εi) = 0 (9)

4This is simply to facilitate the presentation of the various estimators; however, in the

multi-variate case, the results hold, with the proviso that the nature of the regressors must be

specified, in other words, if they are considered predetermined, exogenous or strictly exogenous,

which is crucial in our case. Appendix A shows the treatment given when the variables may be

exogenous, predetermined or endogenous.
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where Zi is a matrix of instruments of (T − 2)×m, which is specified as:

Zi =




yi1 0 0 . . . . . . 0

0 yi1 yi2 . . . . . . 0

. . . . . . . . . .

0 0 0 yi1 . . . yiT−2




(10)

The GMM estimator based on the conditions defined by (8) and (9) minimizes

the following criteria:

M =

[
1

N

N∑
i=1

∆ε′iZi

]
W−1

N

[
N∑

i=1

Z ′
i∆εi

]
(11)

Where WN is a matrix of weightings and its choice leads to two estimators that are

asymptotically equivalent.5 For the estimator of one stage, we use the following

weighing matrix:

WN1 =

[
N∑

i=1

Z ′
iHZi

]−1

(12)

where H is a matrix that contains two in the main diagonal and minus one in the

first two subdiagonals and zeros in the all the other places; this is done to con-

trol the moving average term that is generated in the errors when differentiating.

Equation (13) shows the estimator that is obtained when (11) is minimized with

respect to α:

α̂1GMM = [∆y′(−1)ZW−1
N1Z

′∆y(−1)]
−1[∆y′(−1)ZW−1

N1Z
′∆y] (13)

where ∆y(−1) is a vector of N(T −2)×1 given by ∆y′(−1) = (∆y′1(−1), ....∆y′N(−1))
′,

5They are usually known as the one and two stage estimators respectively.
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in the same way that ∆y′ = (∆y′1, ....∆y′N)′ which is also of the order of N(T −
2)× 1, and finally Z ′ = (Z ′

1, ........Z
′
N)′, la which is matrix of m×N(T − 2). The

estimator α̂1GMM is consistent in the measure that N → ∞, , though it is not

efficient. The efficient estimator, which we term α̂2GMM emerges from choosing

the optimum weighing matrix, which has the following form:

WN2 =

[
1

N

N∑
i=1

Z ′
i∆̂υi∆̂υi

′
Zi

]−1

(14)

where ∆̂υi are the estimated residuals based on a consistent estimator of α, which

is usually the α̂1GMM . estimator. It should be noted that Arellano and Bond

(1991) indicate that the α̂2GMM estimator presents a biased variance in finite

samples and they therefore recommend inferences using the α̂1GMM , estimator;

notwithstanding the inference with α̂2GMM it may be done if the correction to

the second stage estimator variance is carried out, as proposed by Windmeijer

(2001).6 It is thereby possible to use the efficient estimator when carrying out the

inference.

3.2. The Blundell and Bond method

It is interesting to note that the estimators presented above may possess con-

siderable bias if the coefficient associated to the lagged dependent variable is very

near to one, in other words, if the series is highly persistent.7 This occurs because

the instruments become weak with highly persistent series; in other words, they

no longer satisfy one of the conditions required from an instrument, which is that

there must be a high correlation between it and the variable that will be instru-

mentalized. To solve this problem, Blundell and Bond derive an estimator known
6This correction is implemented in the DPD of OX packet.
7It is important to indicate that if ηi is random and if its variance tends to infinite, then the

estimators will also be biased.

9



as the system estimator, which combines the conditions of the estimator in first

differences and the moment conditions of an estimator in levels 8 simultaneously.

The moment conditions used are given by:

E(yit−s∆µit) = 0 t = 2...T s = 2.....t− 1 (15)

E(∆yit−1µit) = 0 t = 3...T (16)

with µit = ηi + εit. Using matrixes, we have:

E(Z ′
siqi) = 0

where Zs is

Zs =


 Zdi 0

0 ZP
li


 =




Zdi 0 0 0 0 0

0 ∆yi2 0 . . . . . . 0

0 0 ∆yi3 . . . . . . 0

0
...

...
...

...
...

0 0 . . . . . . 0 ∆yiT−1




(17)

where ZP
li takes the elements of the diagonal/axis of the instrument matrix of

the estimator in levels.

As in the earlier cases, the one and two stage estimator is obtained in the same

manner as in the Arellano and Bond method.
8For a review of this and other estimators see Benavente and Melo, who provide a review of

the various methods used in dynamic panels
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3.3. The Kiviet Correction

The previous estimators possess good asymptotic properties; however, in finite

samples, their behavior may be very poor and display considerable bias. Kiviet

(1995) attempts to solve this problem using the LSDV estimator, which is simply

the least squares estimator with dummy variables.9 While this LSDV estimator

turns out to be inconsistent, Kiviet finds a way of eliminating its bias by usually

using the first stage GMM estimators with consistent estimators of the self-

regressive coefficient.10 The superiority of this method is demonstrated by means

of Montecarlo experiments. Kiviet (1995) shows that the bias may be calculated

as11:

E(β̂LSDV − β) = −σ2
ε (D)−1(

N

T
(ι′T CιT )[2q −W

′
AW (D)−1q]

+ tr{W ′
(IN ⊗ AT CAT )W (D)−1}q

+ W
′
(IN ⊗ AT CAT )W (D)−1q + σ2

ε Nq′(D)−1q

× [−N

T
(ι′T CιT )tr{C ′AT C}+ 2tr{C ′AT CAT C}]q)

+ O(N−1T−3/2) (18)

Where tr denotes the trace operator D = WP ′AW + σ2
ε NtrC ′AT Cqq′, AT =

IT − 1
T
ιT ι′T , q = (1, 0, ·, ·, ·, 0), AW = E(AW )

The expression above has the disadvantage of being extremely complex. How-

ever, there is an alternative means of obtaining this correction, which was de-

veloped by Kiviet and Bun (2003). In order to apply this formula to the growth

model in which we are interested, we shall assume the equation of interest to be:

yit = γyit−1 + αx′jit + ηi + εit

9It is simply the WG estimator.
10He uses the estimator in difference of Arellano and Bond and the system estimator, both

in their first stage.
11For further details on the derivation of this expression, see Kiviet (1995).
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where j = 1, 2, and represents the regressors to be considered in the estimate.

However, we know that the parameter γ, may be seen as γ = 1 + β. through

theoretical conditions of the Solow model. This is significant since the term of

interest is β. This allows us to apply the Kiviet correction to a model such as:

∆yit = βyit−1 + αx′jit + ηi + εit

It is simple to show that the Kiviet methodology applies to the model above.

Based on this, it is possible to define the bias component that should be removed,

which is O(T−1). This term may be stated as:12

C1(T
−1) = σ2

ε tr(Π)q1

Where Π = ALΓ, with IN ⊗ ΓT and ΓT = (IT − βLT )−1, L = IN ⊗ LT .

The matrix LT , xxxx has ones in the first subdiagonal and zeros in the other

elements. Meanwhile, q1 is a vector of (k + 1)× 1 elements, which may be stated

as q1 = Qe1, where Q = [E(WW )]−1, with Q = [Y(−1), X1, X2], which gives a

matrix of (k + 1) × (k + 1), where k represents the number of regressors apart

from the lagged independent variable.13 For vector e1 where e1 = (1, 0, .,0), with

(k + 1) × 1. This formula is far easier to evaluate than that given by equation

(18). The above correction gives us an estimated convergence rate with less bias.

Appendix C of this paper, presents the results of a Montecarlo experiment we

constructed, with the aim of displaying the superiority of this correction.

4. Results

The results of applying the methodologies indicated earlier are given in ta-

bles one, two and three of Appendix B. The data base used for carrying out the
12The notation used here follows Kiviet and Bun’s (2003) work closely.
13k = 2 in our experiment
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estimates is the same as that used by Caselli, Esquivel and Lefort (1996).14 The

variables are measured in logarithms, where the savings rate is built as the ratio

Investment-Product. Meanwhile, the effective population growth rate is built as

the sum of the population growth rate plus the productivity enhancing techno-

logical development rate plus the physical capital depreciation rate, where the

sum of the latter two, g + d is assumed to be 0.05.It should be noted that the

variables are measured in five year periods, covering 97 countries, in the period

1960-1985. The advantage of having this base is that the results obtained are di-

rectly comparable to those reported by them. Table one shows the estimation of

the Solow model. Columns one and two report the results of the traditional least

squares/OLS and WG estimators. As was already mentioned in the methodology

description, these estimators are inconsistent, however, they aid us in working

with the GMM since the estimators obtained with this technique cannot go over

the least squares estimator, and cannot go under the WG. When we proceed to

estimate by GMM, the savings rate and population growth rate are treated as

endogenous, and we therefore instrumentalize in line with this fact.15 Considering

this, we may observe that since column three uses the GMM estimator of differ-

ences, the parameter associated to the lagged per capita income is -0.47, which

implies a convergence rate of around 12As mentioned earlier, the Caselli et al

(1996) work is replicated in column three. If we were to believe in these results,

the implications for growth theory would be that countries complete their path

to the steady state in a period of 10 years, which is surprisingly high compared

to the convergence rate of other studies. Hence, columns five and six show the

first and second stage system estimators respectively.16 A result that immediately
14The data for this base are obtained from Summer and Heston, and Barro and Lee.
15Appendix B indicates the way in which moment conditions are treated when we have

exogenous, endogenous and predetermined variables.
16This exercise was developed by Bond et al (2001). However, his results are not comparable

to those of Caselli et al (1996), since they obtain different results in quantitative terms, but
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grabs ones attention is the sharp drop in the parameter associated to the lagged

per capita income, falling from −0, 47 to −0, 09. Obviously, the convergence rate

also falls and reaches around 2%, which is in line with most studies on conver-

gence, particularly those with cross-section analysis. On the other hand, column

five shows us that the three parameters are statistically significant, which is cor-

roborated by the second stage estimator. These results show that the conclusions

reached by Caselli et al (1996), are based on an estimator with poor performance

when faced with weak instruments, which leads to estimate bias.17 However, as

mentioned in the methodology section (and as demonstrated in Appendix C of

the present paper), we can obtain a more reliable result in finite samples for both

the systems estimator and the estimator in differences. To this end, we utilize the

Kiviet correction.

Table two shows the results of applying this technique. However, the sample

drops from 97 to 92 countries, in order to obtain a balanced panel. It may be

observed that the first four columns do not greatly differ from that reported in

table one. However, column five displays significant differences. In column five,

the parameter associated to lagged per capita income is -0.15, which is more

similar to the estimations of the Blundell and Bond estimator. The convergence

obtained using this parameter is around 3%, which is once again in line with

most of the empirical literature. This is interesting, since it gives robustness to

the fact that the convergence rate is around 3 or 4% a year. Finally, we estimate

an augmented Solow model, where the logarithm of the number of enrollments is

included. The results are shown in table three, which once again confirm the fact

similar results in qualitative terms, even though they use the same database. We started by

replicating the results of Caselli et al (1996) and can thus compare our results to theirs, not

only in qualitative terms but also in quantitative terms.
17By means of a Montecarlo experiment, its behavior, as well as that of other estimation

methods for various parameters, is presented in Appendix C.
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that when the correction is applied, the results do not differ greatly, confirming

a convergence of around 3%.

5. Conclusions

New methodologies in dynamic panels for the estimation of growth equations

are applied in the present paper. Hence, our point of departure was to replicate

the results obtained by Caselli et al (1996) by applying the GMM systems estima-

tor. We consequently found that the convergence rate of 12% dropped to around

3%, which indicates that there is no significant difference between the results of

cross-section studies and our results. Furthermore, the results are robust, since

when the Kiviet correction was applied, the convergence rate remained around

3%.

In summary, the final conclusion is that when estimating growth equations

using GMM in dynamic panels, the results do not differ greatly from cross-section

studies, and that the best way of estimating the relationship is by means of the

Kiviet estimator.

6. References

1. Alvarez, J.,y Manuel Arellano.1997 "The times series and Cross-Section:

Asymptotics of Dynamic Panel Data Estimators".Working Paper.CEMFI,

Madrid.

2. Arellano,M and S.Bond (1991). "Some tests of especification for panel da-

ta:Monte Carlo evidence and an application to employment equations.Re-

view of Economic Studies,58,277-297.

15



3. Arellano,M and S.Bond (1998)."Dynamic panel data estimation using OX".

Institute for Fiscal Studies, London

4. Arellano, M. and O.Bover (1995) .Another look at the instrumental variable

estimation of error-components models."Journal of Econometrics,68,29-52.

5. Baltagi, B.H., 1995. Econometrics Analysis of Panel Data. Chichester:Wiley.

6. Blundell,R. and S.Bond.(2000)."GMM estimation with persistent panel da-

ta:an application to production functions."Econometric Reviews, 19(3),321-

340.

7. Blundell,R., S.Bond and F.Windmeijer.(2000). "Estimation in dynamic pan-

el data models:improving on the performance of the standar GMM estima-

tor."In B.Baltagi(ed.),Nonstationary Panels, Panel Cointegration and Dy-

namic Panels, Elsevier Science.

8. Bond,Stephen, Anke Hoeffler y Jonathan Temple (2001). "GMM estimation

of empirical growth models".

9. Barro,R y X Sala-i-Martin (1995)."Economic Growth"MacGraw-Hill, Inc.

10. Barro,R y X Sala-i-Martin (1990)."Economic Growth and Convergence Across

the United States"

11. Benavente,J y M Melo(2002). "Paneles de Datos Dinámicos", Universidad

de Chile,Manuscrito no publicado

12. Caselli,Francesco, Gerardo Esquivel y Fernando Lefort(1996);Reopening the

Convergence Debate: A New Look at Cross-Country Growth Empirics",

Journal of Economics Growth,1,363-389.

13. Chumacero,R .Absolute Convergence, Period"

16



14. Fuentes,R Çonvergen las Regiones en Chile? Una interpretación"

15. Hsiao,C.(1986). Analysis of panel data. Cambridge: Cambridge University

Press.

16. Kiviet,J.(1995). .On bias, inconsistency, and efficiency of various estimators

in dynamic panel data models."Journal of Econometrics, 68(1), 53-78.

17. Lefort,F (1997)Çrecimiento Económico en Chile:Evidencia de Panel", Doc-

umentos de Trabajo del Banco Central Nř18

18. Windmeijer, F 2000. .A Finite Sample Correction for the Variance of Lin-

ear Two-Step GMM Estimators".The Institute for Fiscal Studies, Working

Papers series Nž W00/19, London

17



Appendix A: Multivariate Analysis

The model we are interested in is of the following type:

yit = αyit−1 + βxit + µit, t = 2.....T

where µit = ηi + υit y xit is a scalar. Let us assume that xit is correlated to

ηi.We also know that xit may be correlated in three different ways to υit, which

will lead to various moment conditions. We shall firstly assume that xit is strictly

exogenous, and is expressed in the following manner:

E(xisυit) = 0 con s = 1.....T, t = 1......T

The second case may be that xit is predetermined or weakly exogenous, where:

E(xisυit) = 0 con s = 1....t, t = 1...T

and

E(xisυit) 6= 0 para s = t + 1, ...T
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Finally, xit may be determined endogenously, and so:

E(xisυit) = 0 s = 1, ....t− 1, t = 1, ......T

and

E(xisυit) 6= 0 s = t, ....T, t = 1, ......T

With the above, we will have different moment conditions for each case, where

the conditions given for the self-regressive part hold, but we will have additional

conditions for each case of xit . If xit is strictly exogenous, the moment conditions

are:

E(xits∆υit) = 0 s = 1......T, t = 3, ......T

which leads to the existence of T (T − 2) additional moment conditions. Mean-

while, when xit is predetermined, we have:

E(xis∆υit) = 0 s = 1....., t− 1 t = 3.....T
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where the additional moment conditions are 0,5(T − 2)(t − 1). Finally, for the

case of endogenous xit we have:

E(xis∆υit) = 0 s = 2....., t− 1 t = 3.....T

the available conditions are 0,5(T − 2)(T − 1).Thus, the systems estimator is

obtained by combining the conditions in first differences and in levels. To demon-

strate this, let us assume that xit is endogenous, and that consequently the con-

ditions in first differences are:

E(yit−s∆υit) = 0

and

E(yit−1(ηi + υit))

with t = 3...T and s = 2, ....., t− 1

For xit we have:

E(xit−s∆υit) = 0

20



and

E(∆xit−1(ηi + υit)) = 0

for t = 3...T and s = 2, ....., t− 1
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Appendix B: Estimate Results

WG OLS DIF1 DIF2 SYS1 SYS2

Ingreso Per Capita(-1) -0.32 -0.03 -0.47 -0.31 -0.09 -0.11
(0.06)*** (0.01)*** (0.14)*** (0.20) (0.04)** (0.03)***

Tasa de Ahorro 0.13 0.09 0.04 (0.11) 0.17 0.19
(0.04)*** (0.02)*** (0.07) 0.08 (0.04)*** (0.04)***

Tasa de Crecimiento -0.10 -0.12 -0.20 -0.37 (-0.50)** -0.53
de la población (0.15) (0.056)** (0.33) (0.32) (0.25)** (0.21)***
Lamda Implicado 0.077 0.006 0.1269 0.074 0.018 0.02

Wald 0.002** 0.074   0.0 **    0.0 **
Sargan 0.104 0.130  0.0** 0.76
AR(1) 0.005** 0.004**     0.0 ** 0.0 **
AR(2) 0.655 0.796   0.81 0.78

N 97 97 97 97 97 97
Observaciones 477 477 380 380 477 477

*** Significativo al uno por ciento

**Significativo al cinco por ciento

*Significativo al diez por ciento

Entre parentesis errores estandar

Tabla 1: Estimaciones del modelo de Solow
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Appendix C: Montecarlo Simulation

The Montecarlo simulation that allows the superiority of the Kiviet correction

to be demonstrated is described in this appendix. The experiment design com-

bines elements from the works of Kiviet (1995), Kiviet and Bun (2003), as well

as from Arellano and Bond (1991). The aim of this is to demonstrate that the

convergence rate is estimated with less bias, through the corrected within group

estimator proposed by Kiviet. This correction is fundamental for the results shown

in Appendix B of this paper. As was mentioned in the methodology section, the

Kiviet correction is applied to the within group estimator, which, as is well known,

is inconsistent for a fixed T. This is expected to be fulfilled given the traits of

the database that we are using, so the estimates obtained from the within group

methodology are inconsistent. Given this, it is clear that the elimination of this

bias component that depends on T would allow us to obtain a better and more

precise form of estimating the convergence rate. This is exactly what Kiviet (1995)

and Kiviet and Bun (2003) implement, which is simply eliminating the bias com-

ponent and using the within group estimator in panels, with the characteristics

that we are working with. In order to demonstrate the superiority of this correc-

tion, a Montecarlo experiment is designed, where the various estimation methods

used in this paper are compared. The experiment and the parameters used are

described as follows.
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The model

The model we are interested in is given by the following dynamic specification:

yit = γyit−1 + βx′jitηi + εit

Where i = 1....N , t = 1, 2.....T , y j = 1, 2,which reflects the fact that we have two

regressors in the equation for estimation. As indicated earlier, there are several

methods for estimating this model. As already stated, the experiment that we

carry out here closely follows Arellano and Bond (1991), Kiviet (1995), and Kiviet

and Bun (2003). The aspects to be considered are:

1. yi0 = 0,is not fixed, but is instead left random. In order to prevent this

assumption from having a significant effect on the results, the first 50 ob-

servations of each unit are eliminated. This gives us the necessary flexibility

in the issue of the initial observation for each process of the corresponding

unit, so that the results do not depend on this borderline condition.

2. The term εit is generated with σ2
ε = 1, and σ2

η = 218

3. In contrast to Kiviet (1995), Kiviet and Bun (2003), and Arellano and Bond

(1991), our design has two regressors associated to the lagged dependant

variable. This allows us to know the properties of the estimators in the

face of changes in the structure of the regressors. Thus, we assume that

σ2
ξx1

= σ2
ξx2

= 1. The values of β1 and β2 are allowed to differ from each

other in the experiment. We assume that β1 = 0,9 and β2 = 0,59 for the

savings rate and population growth rates respectively. These values arise

from the database that we are using. The objective of this is to be able to

feed the model with the structure of the real data, and to know how the

various estimators behave under these conditions.
18Realizamos diversas parametrizaciones y los resultados no varian mayormente.
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4. Finally, we fixed N = 92 and T = 5. These parameters come from the

database that generates the results displayed in Appendix B.

In summary, it may be said that the design of the experiment is sufficiently

rich in order to obtain the necessary conclusions regarding the properties of the

estimators in which we are interested. This is because both theoretical and real

data elements are combined.

Results of the Simulated Model

Tables A.3.1, A.3.2, A.3.3 and A.3.4, display the results of the Montecarlo

experiment described above19 The exercise includes various values of the γ, coeffi-

cient, as well as estimations for various methodologies. The columns of the tables

show the results for the estimates using least squares, WithinGroup (LSDV ),

Kiviet estimator, Arellano and Bond estimator (GMM), and the Blundell and

Bond systems estimator (GMM − SY S). In order to analyze the robustness of

the experiment in which we are interested, we replicated the Kiviet (1995) ex-

periment, but with two regressors instead. Table A.3.1 shows the results in terms

of bias, where it is clear that the Kiviet estimator shows the lowest average bias

for the various parameters. It should be highlighted that the GMM-SYS, always

overestimates the true value of the parameter and its behavior is very similar to

the OLS. On the other hand, when we use the Mean Quadratic Error criterion, it

can again be seen in Table A.3.2 that the Kiviet estimator is the best estimator

for all parameters. With this in mind, the results obtained from the simulation

in which we are interested may be analyzed.

In Table A.3.3, it can be clearly seen that regarding bias, the Kiviet estimator

is superior to all other estimators. The Kiviet model particularly performs bet-

ter than the Blundell-Bond estimator systems and OLS for values of γ = 0,95,

which is a critical value for this type of model. This result is of vital interest for
19The number of repetitions is 100 simulations.
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the estimations of the growth models shown in Appendix B of this paper. The

behavior of the Kiviet and GMM-SYS estimators are not significantly different

for the coefficients β1 y β2, Thus, these underline the fact that the Kiviet method

offers the lowest bias when estimating the convergence rate in the Solow model.

This reaffirms the results shown in Appendix B.

Nevertheless, it is also possible to carry out the comparison in terms of the

Mean Quadratic Error. Once again, the results here confirm the fact that the

Kiviet estimator is superior to the GMM-SYS estimator, since the results show

that it has the lowest Mean Quadratic Error for the various values of γ, The

Kiviet is also superior in the case of the β1andβ2, coefficients, the behavior of the

ECM.

Certain observations should be made concerning the results reported in Tables

A.C.3 and A.C.4. Firstly, the poor performance of the Within Group and GMM

estimators should be mentioned. This is a standard result in the literature and

should not surprise, but rather delivers robustness to the main results arising

from this experiment.

The results provided herein allow us to be confident of the supremacy of the

Kiviet estimator of growth models. It provides robustness to the convergence rates

reported in Appendix B of the present paper. Lastly, it demonstrates the need

to evaluate this type of estimate through Montecarlo experiments, attempting to

capture the elements of the real data available to the researcher.
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Table A.C.1: Comparison of the mean bias for various values of γ,

using the Kiviet (1995) experiment

γ OLS LSDV KIVIET GMM GMM-SYS

Bias γ 0.70 0.272 -0.365 0.227 -0.390 0.290

0.75 0.225 -0.395 0.197 -0.460 0.242

0.80 0.178 -0.427 0.167 -0.546 0.193

Bias β1 0.70 -0.200 0.052 -0.029 0.043 -0.145

0.75 -0.158 0.046 -0.019 0.024 -0.110

0.80 -0.118 0.042 -0.011 0.030 -0.084

Bias β2 0.70 -0.080 -0.010 -0.008 0.003 -0.134

0.75 -0.060 -0.014 -0.008 -0.015 -0.103

0.80 -0.045 -0.019 -0.017 -0.019 -0.097
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Table A.C.2: Comparison of the Mean Quadratic Error for various

values of γ, using the Kiviet (1995) experiment.

γ OLS LSDV KIVIET GMM GMM-SYS

E.C.M γ 0.70 0.273 0.368 0.237 0.439 0.291

0.75 0.225 0.397 0.207 0.508 0.242

0.80 0.178 0.430 0.178 0.592 0.193

E.C.M β1 0.70 0.205 0.123 0.126 0.367 0.221

0.75 0.165 0.139 0.144 0.426 0.215

0.80 0.146 0.230 0.242 0.741 0.321

E.C.M β2 0.70 0.115 0.119 0.130 0.283 0.328

0.75 0.110 0.138 0.150 0.325 0.356

0.80 0.160 0.235 0.255 0.547 0.570
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Table A.C.3: Comparison of the mean bias for various values of γ,

using various estimation methods

γ OLS LSDV KIVIET GMM GMM-SYS

Bias γ 0.70 0.296 -0.291 0.213 -0.304 0.299

0.75 0.247 -0.296 0.184 -0.333 0.249

0.80 0.198 -0.299 0.154 -0.357 0.200

0.85 0.149 -0.300 0.123 -0.366 0.150

0.90 0.100 -0.290 0.089 -0.294 0.100

0.95 0.054 -0.045 0.007 -0.007 0.054

0.97 0.038 -0.007 0.001 -0.001 0.038

Bias β1 0.70 -0.079 0.013 -0.008 0.005 -0.048

0.75 -0.075 0.012 -0.006 -0.005 -0.041

0.80 -0.069 0.010 -0.004 -0.020 -0.033

0.85 -0.062 0.008 -0.002 -0.042 -0.024

0.90 -0.051 0.003 0.000 -0.061 -0.007

0.95 -0.036 -0.001 0.001 -0.002 0.016

0.97 -0.028 -0.000 0.000 0.000 0.019

Bias β2 0.70 0.049 0.000 -0.004 0.001 0.043

0.75 0.043 0.003 -0.005 0.011 0.031

0.80 0.037 0.006 -0.006 0.024 0.019

0.85 0.029 0.009 -0.007 0.038 0.009

0.90 0.020 0.012 -0.007 0.042 -0.003

0.95 0.011 0.000 -0.003 -0.001 -0.010

0.97 0.008 -0.002 -0.002 -0.002 -0.004
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Table A.C.4 Comparison of the Mean Quadratic Error for various

values of γ, using various estimation methods

γ OLS LSDV KIVIET GMM GMM-SYS

E.C.M γ 0.70 0.296 0.294 0.223 0.345 0.299

0.75 0.247 0.299 0.194 0.375 0.249

0.80 0.198 0.302 0.165 0.400 0.200

0.85 0.149 0.303 0.134 0.410 0.150

0.90 0.100 0.293 0.101 0.346 0.100

0.95 0.054 0.048 0.019 0.021 0.054

0.97 0.038 0.009 0.006 0.007 0.038

E.C.M β1 0.70 0.080 0.029 0.029 0.087 0.066

0.75 0.076 0.029 0.028 0.088 0.060

0.80 0.071 0.028 0.028 0.091 0.053

0.85 0.063 0.028 0.027 0.098 0.046

0.90 0.053 0.027 0.027 0.116 0.036

0.95 0.038 0.027 0.026 0.088 0.045

0.97 0.031 0.026 0.026 0.088 0.056

E.C.M β2 0.70 0.054 0.027 0.032 0.072 0.085

0.75 0.048 0.027 0.031 0.075 0.078

0.80 0.042 0.027 0.031 0.082 0.071

0.85 0.035 0.028 0.031 0.090 0.066

0.90 0.029 0.030 0.030 0.097 0.063

0.95 0.022 0.029 0.028 0.069 0.059

0.97 0.021 0.028 0.028 0.068 0.064
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