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ABSTRACT

hmhp-wrwmwmcumnfmaquﬂi}ﬁumummnndwuhtnhl
condition for uniqueness of equilibrium in infinite dimensional economies using the
excess utility function.

SINTESIS

En este trabajo se demuestra la existencia de un teorema de equilibrio y se obtiene una
condicién de unicidad de equilibrio en economfas de infinitas dimensiones recurriendo
a la funcién de exceso de utilidad
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EXISTENCE AND UNIQUENESS OF THE COMPETITIVE
EQUILIBRIUM FOR INFINITE DIMENSIONAL ECONOMIES’

Elvio Accinelli

1. INTRODUCTION

In this paper without assuming the existence of the demand function, from
the excess utility function, we prove the existence of an equilibrium theorem, and
we obtain a condition to unigueness of equilibrium.

In the first section we characterize the model, and we introduce some
standard definitions from the general equilibrium theory.

In the second section we introduce the excess utility function and we show
some of its properties.

In the third section, from the excess utility function, we prove that there
exist a bijective relation between the equilibrium allocations set and the set of
zeroes in the excess utility fuction.

In the fourth part, from the excess utility function we obtain a binary
relation in the social weights space, and prove that the equilibrium set is not
empty. Our main tool is the Knaster, Kuratowski, Masurkiewicz lemma.

In the next section, from the excess utility function, we define the weak
axiom of the revealed preference. S0 defined, this axiom, is only formally
similar to the classical one. It has the same mathematical properties as those of
the classical axiom of revealed preference, but it does not have the same
economic interpretation. We prove that if the excess utility function has this
property then uniqueness of equilibrium follows, that is, there exists only one
zero for this function.

Finally, examples of economies with the weak axiom of revealed preference
in the excess utility function are given.

* Estudios de Economfa, publicacién del Departamento de Economia de la Facultad de Ciencias Econdmicas ¥
Administrativas de la Universidad de Chile, vol. 21, n"2, diciembre de 1994,
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2. THE MODEL

Let us consider a pure exdmngewithnagmﬂsandlgoodsatuch:ﬁenf
the world. The set of states is a measure space: (0, 4, V).

We assume that each agent has the same consumption space,M = 1#, -1 M,
where M, is the space of all positive measurable functions defined on (@, 4, V).

Let R!, ={x € R' with all components positive!} .

Following Mas-Collel (1989), we consider the space A of the C° utility
functions on R!,, strictly monotone, differentiably strictly concave and proper.

Definition 1. A C° wility function u is diferentiably strictly convex, if it is strictly
convex and every point is regular; that is, the Gaussian curvature, C,, of each
level surface of u, is a non null function in each x.

For x, y € R we will write x > y if x; >yi=1..landx # Y.
Definition 2. A wility function is strictly monotone ifx > y =* U (x) > ufy).

Definition 3. We say that u € C° is proper if the limit of |\u' (x)| is infinite,
when x approaches the boundary of Rf.,i.c. the se¢t B = { x: x, = 0 for some
i=1,...,n}.

We will consider the space U of all measurable functions
U: QxR ~ R, such that U (s, .) € A for each 5 € 1.

We introduce the uniform convergence in this space: U, ~ U if
U, - Ulg ~ 0 for any compact K c R!,, where |U, - Ulg =
ess sup max{|U, (52 -U(s2) |+ |9U,(52) —3U(s,9)|+ 1P U, (s -F UG

seld zeK

Each agent is characterized by his utility function ¥, and by his endowment
w, € M. From now on one we will with economies with the following
characteristics:

a) The utility functions ¥ : M - R are separable. This means that they can be
represented by
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= [ U ExE @ i=Leon Q

where U, : @ x R!, = R and Us, .) is the utility function of each agent at
every state s € .

b) The utility functions U, (s, ) belongs to a fixed compact subset of A, for
eachs € Q and U; € U.

¢) The agents’ endowments, W; € M are bounded above and bounded away
from zero im any component, j.e., there exists h and H with
hﬁwlj(s)ﬂﬂforeachj-—-f...handsE Q.
The following definitions are standard.

Definition 4. An allocation of commodities is a list x = (X « - - » Xn ) where x:

Q— R* and oy % () € Tpoy W ).

Definition 5. A commodity price system is a mesurable function p : Q ~ R!.,

and for any z € R’ we denote by (p, 2) the real number g p(s) z (5) dv (5).
(We are not using any specific symbol for the Euclidean inner product in R'.)

Definition 6. The pair (p, x) is an equilibrium if:

i)

p is a commodity price system and x is and al location,

i) px)spwl<eViel,..,n }

iii) if{p, 2) = {p, w,} with z. Q - Rf,. then

fn U, (s, x, () adv () = fn U(s,z2))dv &) Vi€ {10t M

2. THE EXCESS UTILITY FUNCTION

In order to obtain our results we introduce the excess utility function.

We begin by writing the following well known proposition:
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Proposition 1. For each \ in the (n - 1) dimensional open simplex,
A*1={A eR;TA,=1), there exists (A) ={x;(A). .- 7, (MYER: that solves the
following problem:

AKX en'n : l‘l Ul ‘Ptl)
subject to L, x, < L, w,and x, = O’ @)

If U, depend also on s € ﬂ.andU,(s..)EAforuchsED,md

A € A", there exists X (s, A) = % (5 A)eees X, (55 A) that solves the
following problem:

INAX, er's AU G x,(s))
subject to T, %, (s) < T, w, (5) and x,6) = 0. @)

If ¥ (s, A) are the Lagrange multipliers of the problem @), j € 1,... I},
then from the first order conditions we have that

A, s ("';f'”) =y (s, ) with § € {l,...,») and j € {1,... I}

Then the following identities hold
1,6U,(3.x(s,1))=7{s,1)‘n'i=1,...,n;anstED 4)

Remark 1 From the Inada condition of "infinite marginal wtility” at zero
(Definition 3), the solution of (3) must be strictly positive almost everywhere.

Since U(s, .) is a monotone function, we can deduce that Th %) = Iy ws).
Let us now define the excess utility function.

Definition 7. Let x, (s, A); i € {1,..., n} be a solution of (3).

We say that e : A" - R* e (A) = (e, (A)s...» €, (X)), with
(@=L e EED W@y @ L O
i

is the excess utility function.
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Lemma 1. Themesswi&qﬁmdimisbom@dﬁrabow,ﬂwh.mmt €R
such that e (A) < kI where 1 is a vector with all its components equal to 1.

Proof: To prove this property, note that by definition we can write
e = [ AU, (5. % W) [% (5 A) - w, (9] &V ).
From the concavity of U, it follows that:

U@ x6 ) -U6we) 2 AU, (s, x (s, &) (x; (s, A) - w(s)).
Therefore,
e (&) = In u; (S5, X, (5, A)) - & (W, () DV (S) = Iﬂ U‘(j#l W, () dv (s), ¥ 1]

If we let

k, = fn U, ['il w, (.s')] dv (s) and k = sup Kk

1si<n

the property follows.

Remark 2. Since the solution of (3) is homogeneous of degree zero: ie.,
% (s, A) = X (s, & A) forany « > 0, then we can consider e, defined all over

the space R”, by ¢, (&, A) = ¢, (A) forall A € A

3. EQUILIBRIUM AND EXCESS UTILITY FUNCTION

Let us now consider the following problem:

max, .y 2 -‘il In U, (s, x; ®)) dv )

6
subject to X, x, (8) < L, w, (s) and x s) 20 ©

It is a well known proposition that an allocation ¥ is Pareto optimal, if and

only if we can choose a % such that X solves the above problem, with A = 4.
Moreover, since a consumer with zero social weight receives nothing of value as

a solution of this problem, we have that if ¥ is a strictly positive allocation, that

is {¥ € R!)}, all consumption has a positive social weight. See for instance
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Kehoe (1991). Reciprocally, if A is in the interior of the simplex, then from
remark (1) the solution x (. , 4) of (6) is a strictly positive Pareto optimal
allocation. (This is guaranteed also by the following boundary condition on

preferences: v () € R., : v(s) =, w, ()} for all i and w,(s) strictly positive
and is closed for a.e.s.).

From the first theorem of welfare, we have that every equilibrium allocation
is Pareto optimal.

Let () be an equilibrium allocation, then there exists a A such that
% = {%,..., X,} : Q@ =R", is a solution for the problem at the beginning of this
section.

In the conditions of our model, the first order conditions for this problem
are the same that for (3). Then if a pair (p, %) is a price-allocation equilibrium,

there exists a A such that X (5) = X (s, A) solves (6), and p () = v(s ),
solves (4) for a. e. s.

Moreover, we have the following proposition:

Proposition 2. A pair (P, X) is an equilibrium, if and if there existsh € A"!
such that % (s) = % (s, A) solves (6), and p () = ¥ (s, A) solves (4) for a.e.s.
and e (A) = 0.

Proof: Suppose that X (., A) solves (6) and y (s, ) solves (4). If for
A € A™!', wehave that e (i) = O then the pair (7, X), withp = v (., i) and
Xk 15 1) is an equilibrium.

Reciprocally, if (P, X) is an equilibrium, then it is straightforward by
definition that ¢ (A) = 0. From de first welfare theorem, there exists A €A™,
such that X is a solution for (6). Since p is an equilibrium price, it is a support
for X, i.e., if for some x we have that &, (x) = ¥, @), i = {1,...n}, strictly for
some i then (P, x,) > (p, w,) and from the first order conditions we have that:

P (s) = y (). The proposition is proved.
Let A ={A €A :A,>0Vi=1,.,n}

We will now state the definition of the equilibrium set.
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Definition 8. We will say that A isanequﬂibﬂmufarrﬁeecomy'l € E,

where E ={ A € A%, : &(3) = 0}, ThesetE will be called, the equilibrium set
of the economy.

4. A BINARY RELATION IN THE SOCIAL WEIGHTS SPACE

Let e: R® - R™® be an excess utility function.

Let us define > in A ={A e R} : 3, A =1; A, 2 e}, asubsetof the
social weights space.

Definition 9. We define > as:
(Ap Ay € > iff Ape (A) < 0.
We will write A, > A,.

Properties of the Binary Relation >

> is irreflexible, convex, and upper semicontinuous.

irreflexible A + A because A.e (A) = 0.

convex if A' > A :mdlza-l,thenul’+ﬂ1.2->-lwithu+ﬂ=1
upper semicontinous, A = {x € AY"; A > &} is open

Proof:

A =1{a € AYY Ae(x) < 0}

by the continuity of A.e(.), there exists an open neighbourhood ¥V of &,
such that A.e(V,) < 0. Then A is open.

§. EXISTENCE OF EQUILIBRIUM

Definition 10. We say that ¥ is a maximal element of > if there does not exist
a A suchthata A > ¥.
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Lemma 2. The set of maximal elements in E:’l is non-empty.

Proof: Note that

FA) = A" - (& € AL such that A > a} = {« € A" such that A .e(w) > O}
is a compact set.

We can also see that the convex hull of {A,...,A,} is contained in
Ut , F (A) for all finite subsets Ap... 4, € A*'.  To this end, let
Ajpeees Ay € E:". If y = L., @A, is a convex combination and y is not in

U,“.. . F (A), then A, > y for every i =1,..., n, and so, since > is convex
value, we must have ¥y > y. This is not possible because > is irreflexible.

Then from the Fann-Theorem, it follows that M, .z~ F(A) * @. Itis easy
to see that the set of maximal elements in &:‘1 is equal to f\“;:q F(3).

Then the theorem follows.

Theorem 1. Let € be an economy with infinite dimensional consumption space,
with differentiable strictly convex C* and separable utilities. Then € has a non-
empty, compact set of equilibrium.

Proof: From lemma 2 we know that there exists Y, , 3 maximal element in

E:;'. The colection {ﬂ:;l} may be ordered by inclusion. Consider €, = 0, and
'r“EE:;":E"l, since A"' is a compact set, there exists
yeA* ' ={AeR]Z]  A,;=1} and a subnet {14} such that yg~y. If we prove
that: yeA"!={aeA"" and A>>0)} and that e(y)=0, then the theorem

follows. Suppose that y €8A"" ={A €A™ and that least one A,=0iell,...,nl.
It is strightforward from the definition that lim, ,zw-1le(d)]= since e is

bounded above, (see lemma 2), then there exists £ € b'::i and €, such that
Ee(ym <0, Ve <eg, Sincef € A%l W e < €y < €, thelast inequality
contradicts the maximality of ¥.».

! See, for instance, Baiochi and Capelo (1989).
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Suppose now there exists a e(y) <01 = {1,..., m,} then for the same
E e AT, 1 we have that Ee(y) > 0. From the continuity of Ee(.) we obtain that
E:('r ) <0, Vq. > €, this contradicts the maxlmahty of {1’) s. Thene(y) 2 0
follows. Since y € § and ye(y) = 0, then e(Y) =

The theorem is proved.

Then the set E = {A:e(A) = 0} is non empty. That is, there exists at least
one equilibrium, (x(s, ), p(s, A)), for e..

6. UNIQUENESS FROM W.A.R.P.

Let us now to define the weak axiom of revealed preference (W.A.R.P.)
from the excess utility function.

Definition 11. We say that the excess utility function satisfies the W.A.R.P. if
A.e(r) 20 then A, .e(Ay) <0

Theorem 2. W.A.R.P. implies uniqueness of equilibrium.

Proof: We argue by contradiction. Suppose an A, and A, equilibria.
From Proposition 6) we have that e(4,) = e(r,) =0.

Then Ae(A) = 0, thus W.A.R.P. yields the following inequality
1;:{1;) <0,i=1,2,j=1, 2}.

Uniqueness follows.

Definition 12. Let e be an excess utility function, then e is monotone oOn
T, ={X e R*: A% = 0} if (A4 ~A) (@) ¢ (A)) > 0, whenever
A, - A) €T, e(X)) * (A).

Proposition 3 If (e(.)) is a monotone function, e( .) has W.A.R.P.

Proof: Suppose that A,e(A,) 2 0. Since A,A > 0;i = 1, 2,, there exists
« > 0 such that A, - @A, € T,. Hence,(A; - ad,) (e(A) - e(xdy)) >0
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follows, and then -A,e(xd)) > aAe(A) = 0. Since e is a homogeneous
degree zero function, 4,e(3,)) < 0. We have concluded our proof.

6.1. Some Aplications

Proposition 4 If the central planner chooses \ using the rule > and if the excess
utility function has W.A.R.P., then the A\ choosen by the central planner is an
equilibrium.

From W.A.R.P. we have that Ae(A) < 0. Thatis A > A.
Economies with W.A.R.P. in the Excess Utility Function
Example 1. Suppose an economy characterized by the following utility functions:

1
U(x)=x(s)?, Let endowments be w,(s) = a s and wy(s) = (1-a)s, with
0<a<1,s € (0,1). Let p denote the Lebesgue measure.

The excess utility function is,

o S _1
e() = {f -;- X2 - w) duis), [ % X" Gy - waduts)]

From the first order condition:
2
A

x,(s) =
‘ -

Substituing in the above equation we obtain that:

e(i)-o.lft'i-{ Yo o . s4li=8 }
va+yT-a Ja+y/T-a

It i easy to see that:
Ae(A) <OV A, ie. A > A.

Example 2 For economies with utilities U,(x) = Lgx, i = (1, 2) we obtain
W.A.R.P. in the excess utility function.
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7. CONCLUDING REMARKS

In economies with infinite dimensional consumption spaces, the agent’s
budget may not be compact. Hence the existence of a demand function need not
be a consequence of the utility maximization problem. In our approach without
assuming its existence, with a simple proof, we have obtained the existence of the
competitive equilibrium. So the excess utility function appears as a powerful tool
in order to obtain a deeper insight into the structure of the equilibrium set. Some
additional assumptions about the behavior of the excess utility function allow us
to obtain a sufficient condition for uniqueness of the Walrasian equilibria.
Unfortunately, its economic interpretations are not straightforward.
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