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1 Introduction
Different studies suggest that Chile has one of the most unequal income

distributions in the world (see, for instance, Wold Bank, 1997 and 2000). Despite a

relatively rapid reduction of poverty, Gini coefficients and other measures of

income inequality have remained persistently high over the years. This persistence,

and more importantly, the high inequality, have been accompanied by a good

economic performance, well developed institutions to help the poorest, and a

relatively recognized educational system (see, Mideplan, 1999; Beyer, 1999; Cowan

and De Gregorio, 1996; and Valdés, 2002).

Three stylized facts characterize the recent Chilean experience. First, income

distribution, measured by different statistics, has remained virtually unchanged

over time, and particularly, over the most dynamic period in Chilean history, going

from 1990 to 1998 in which GDP grew over 7% per year. The Gini index in 1990

was the same in 1998 (0.58) and the income ratio between last and first quintile

was of 14.0 in 1990 and 15.5 in 1998. Second, income distribution in Chile is more

unequal than in otherwise comparable countries, showing largest Gini indexes than

East Asia, the Middle East and North Africa (0.38), and even the South Saharan

Africa (0.47). Third, poverty has been reduced consistently (the incidence of

indigence and poverty felt from 14.3% and 39.4% in 1987 to 4.9% and 19.7% in

1996).

Even though these facts are widely accepted (Labbe and Riveros, 1985;

Cowan and de Gregorio, 1996; Beyer, 1997; Larrañaga, 1994; Ruíz-Tagle, 1999),

there is less clarity on the nature and origin of such inequality; and hence, the

policies best suited to reduce it. The analysis of poverty has focused mainly on its

quantification, providing little insights on its causes. Examples of such a practice

are the models of physical deprivation (e.g. Ravallion, 1994; Lanjouw, 1997; and

World Bank, 2000) that provide a somewhat arbitrary definition of poverty from

an economic viewpoint. The idea of �social exclusion� (associated with poverty

levels that make it difficult for some individuals to participate in activities that are

accepted as welfare enhancing) appears to be provide a justification for policy

interventions. However, social exclusion has not provided a rigorous analytical

framework with which to apply such policies. Nevertheless, this avenue of research
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may have helped to stress the importance of considering individual heterogeneity,

both in econometric practice and social program evaluation.1

In this paper we provide an empirical characterization of income distribution

and poverty in Chile, deriving policy implications from them. In particular, we are

interested on whether a good statistical representation of income distribution can

provide evidence of the presence of different populations, different returns to

human capital and the effects of alternative social policies. We focus our analysis in

the year 1996, which can be considered as representative of the period where Chile

experienced its longest and biggest boom (1985-1997).

The paper is organized as follows: Section 2 develops traditional statistical

characterizations of the unconditional distribution of income. Section 3 discusses

how the usage of alternative econometric techniques can help us to uncover key

characteristics of the unconditional distribution that can not be captured using the

methods discussed on Section 2. In Section 4 we explore alternative representations

for the conditional distribution. Section 5 uses the results obtained previously to

evaluate the effects of alternative types of policies on income distribution and

poverty. Section 6 concludes.

2 Income Distribution: Unconditional Analysis
This section provides an empirical characterization of the unconditional

distribution of income among households. Our approach is progressive, in the sense

of building up on parametric and nonparametric approximations to the

unconditional density. To this end, we analyze income distribution in Chile in 1996

by using the National Socioeconomic Characterization Survey (CASEN), which is a

cross sectional survey with detailed information on employment, housing, health,

and income. The survey was applied to 33,617 households from a universe of

approximately 3.6 million households.

We define the following variables of interest: total income of household i

(denoted by Hi), per-capita income of household i (denoted by Yi=Hi/ni, where ni is

                                     
1 As Heckman (2001) and Heckman and Vytlacil (2001) put it, accounting for individual

heterogeneity in response to treatment has been a major development in the economics literature.
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the number of members of the household) and, yi is the (natural) logarithm of Yi.

Table 1 presents basic summary statistics for these variables. The average monthly

income of a household was of US$1,066 with a median income of US$597. On the

other hand, the average monthly per-capita income was of US$270 with a median

of US$145. As can be noticed, these variables are highly dispersed, given that their

coefficients of variation (Standard Deviation over Mean) exceed unity.

As usually happens with the series in levels, and consistent with the fact

that the average income of a household is substantially lower than the median

income, there is strong evidence of departures from normality, presenting in both

cases (H and Y) a positive skewness and excess of kurtosis.

Table 1

Descriptive Statistics

Hi Yi yi

Mean 1066 270 5.052

Median 597 145 4.979

Standard Deviation 1717 473 0.981

Skewness 8.359 [0.000] 12.104 [0.000] 0.219 [0.000]

Kurtosis 158.201 [0.000] 355.786 [0.000] 4.201 [0.000]

Jarque-Bera [0.000] [0.000] [0.000]

Gini 0.541 (0.006) 0.551 (0.007)
Notes: Standard deviations in parenthesis. P-values in brackets. The standard deviations for the

Gini coefficients were computed using weighted bootstrapping over 1,000 artificial samples.

Table 1 also displays an estimate for the Gini indexes (G) and their

associated standard deviations. For a given variable x, the index was computed as

follows:
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where N corresponds to the number of households on the survey and wi corresponds

to the weight associated with variable xi.2 In order to obtain estimates for the

standard deviations, a weighted bootstrapping was used.3

A simple way to provide an empirical characterization of the regularities of

the unconditional distribution of income is to use kernel estimators of the densities

defined as:
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where h denotes the bandwidth which controls the smoothness of the estimated

density and + ,K -  is the kernel function (see Silverman, 1986 or Pagan and Ullah,

1999 for details).

Figure 1 present two panels; the one on the top displays the estimated

kernel density for 3 bandwidths for H (the same results emerge for Y). We denote

by h the curve obtained when using the bandwidth proposed by Silverman (1986).

The other two curves correspond to densities estimated using half and 1.5 times h

as the bandwidth.4

As Park and Marron (1990) and Wand, et al. (1991) make clear, the choice

of bandwidth is critical. In our case, if we use the bandwidth proposed by

Silverman (1986) we obtain a smooth density that appears to have different

characteristics from the density that is obtained from, say, half its size.5 The main

feature that distinguishes both densities is that the one estimated with h/2 has at

least a distinct �bump� and may even be bimodal while the one obtained with h

                                     
2 For the case of H, the weight wi is Wi (expansion factor), while for Yi, wi is Wini.
3 That is; 1,000 artificial samples, each of size N were simulated; each observation was drawn from a

pair . /,i ix w  and used to recompute (1) for each sample. Once the 1,000 bootstrapped Gini indexed

were computed, we obtained estimates for the standard deviation.
4 In both cases we used a Gaussian kernel. Results using the Epanechnikov kernel are almost

identical. Even though the kernel was estimated with all the observations, in order to be able to

visually distinguish among the densities estimated with the kernels, Figure 1 shows them excluding

200 observations that correspond to the highest incomes.
5 It is important to mention that most of the statistical software that have kernel density estimation

use Silverman�s bandwidth as default.
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does not have these characteristics. Bimodal densities for income distribution are

well documented in the literature and a choice of bandwidth that over-smooths the

estimated density may not be able to capture it. Furthermore, particularly in cases

in which the strong departures from normality come from the third moment, we

should be careful in defining the appropriate bandwidth (see particularly Park and

Marron, 1990 and Deaton, 1998).

Figure 1

Unconditional Distribution of Hi (Kernel Estimator)
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Second Derivative

The choice among alternative bandwidths was conducted following

Silverman (1986) suggestion, referred to as the �test graph method.� In our data,

important characteristics of the series may be overlooked if one adders to the

mechanical choices of several econometric softwares (h). Meanwhile, h/2 conforms
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to the general principle suggested by Silverman´s method, making evident the

possible existence of more than one mode.

Once nonparametric estimates of the unconditional densities are obtained,

we turn our attention towards evaluating some familiar parametric counterparts.

Given that both H and Y are non-negative random variables, we focus our search

to density functions that have a non-negative domain. In order to provide a guide

of our progress with respect to which specification is preferred by the data, we also

report the Akaike Information Criterion (AIC).

Recalling that a smaller number for AIC is preferred and denoting by k to

the dimension of θ (the vector of parameters estimated by Maximum Likelihood),

for each density considered, we compute the AIC as:
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Our initial search specializes on densities that are unimodal and thus do not

seem to match a characteristic that appears to be important if we take into

account the results that were obtained from the nonparametric estimates. The

main findings for both H and Y are that when confronted with the data; of all the

densities considered, a lognormal approximation renders the best results.

This suggests that a good point of departure would be to consider

parametric and nonparametric alternatives for y against the normal distribution

benchmark (i.e., if Y is log normal, y is normal). Nevertheless, even if we ignore for

the moment the bimodality that appeared to be present in the nonparametric

estimation, a lognormal approximation (which is unimodal) has the property of

being completely characterized by the two parameters estimated. In particular,

using both parameters we can estimate the mean, median, mode, skewness and

kurtosis implied by the lognormal approximation.6 Consequently, even though we

find that the parameters estimated are able to replicate the first moments

(medians, modes and means), in both cases they substantially underestimate the

coefficient of variation, skewness and kurtosis.

                                     
6 See Evans, et al. (1993) for details.



7

In summary, the best parametric specification (from the ones considered) for

the levels of H and Y is given by the lognormal distribution. Nevertheless, this

parametric alternative does not fully capture important regularities of the series.

We now turn our attention to providing a good statistical description for y.

Given that y can now take any value on the real line, we look for parametric

densities that conform to this domain.

Table 2

Alternative Densities for yi

Distribution AIC Parameters

Location Scale Shape

Generalized Cauchy 1.387 5.026 (0.001) 2.541 (0.003) 4.853 (0.009)

Error 1.399 5.048 (0.001) 0.937 (0.001) 1.034 (0.001)

Extreme Value 1.527 4.579 (0.001) 1.090 (0.001)

Laplace 1.412 4.979 (0.005) 0.755 (0.001)

Logistic 1.388 5.020 (0.001) 0.543 (0.001)

Normal 1.588 5.052 (0.001) 0.981 (0.001)

Student�s (Noncentral) T 1.387 5.026 (0.001) 0.742 (0.001) 8.705 (0.019)
Notes: AIC = Akaike Information Criterion. Standard deviations in parenthesis.

Table 2 and Figure 2 report these results. An interesting feature of these

results is that, even though the �best� parametric alternative for modeling Y was

the lognormal distribution, corresponding to y being normal. When confronted with

other parametric alternatives (such as the Generalized Cauchy, Student�s T, and to

a lesser extent the Logistic distribution), the normal distribution does the poorest

job on fitting the data. The most successful approximations (such as the Logistic or

the Student�s T) are able to capture the leptokurtic characteristics of the data.

However, with the sole exception of the Extreme Value distribution, all the others

are symmetric and thus do not capture the marginal evidence of positive skewness

reported on Table 1. Furthermore, all of the distributions considered are unimodal,
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and though a few of these alternatives resemble the shape of the kernel estimate,

they do not display the apparent bimodality that once again arises.7

Figure 2

Alternative Densities for yi
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Given these results, we felt inclined to pursue the matter of possible

bimodality on the unconditional pdf of y using parametric and seminonparametric

alternatives that do not constraint our search to unimodal representations. Section

3 addresses these issues and introduces the methods used.

                                     
7 Given that the unconditional moments of y and Y differ in important respects (such as the

attenuated excess of kurtosis and positive skewness) the caveats for choosing the bandwidth of the

kernel estimator are not present in this case. In fact, the test graph method showed that

Silverman�s suggestion for h was now, if anything, undersmoothing the estimated pdf.
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3 Unconditional Analysis: Further Discussion
The parametric alternatives considered up to this point, miss key properties of y.

This section develops two alternative estimates for the density of y by using more

complex econometric techniques that, in principle, can represent it better.

The first builds on the increasingly popular approach of modeling time series

which is commonly referred to as Markov Switching Regime Models (see Hamilton,

1994 or Kim and Nelson, 1999). In our case we will focus our attention to processes

known as i.i.d. mixture distributions. The second that, to our knowledge, has never

been used before in this context combines the estimation of truncated densities

with threshold models. For completeness, we first provide a brief description of

each of the techniques used, reporting their results immediately after.

3.1 Mixture Distributions

One way to approximate relatively intricate density functions is by means of

mixing i.i.d. distributions. It is well known that even simple mixtures of normal

distributions can generate rather complex pdfs (see Hamilton, 1994 for a few

examples). In our case, given that y can, at least in principle, take any value on the

real line, we will approximate its pdf by mixing independent normal distributions.

Briefly, we assume that there are J possible states or regimes. Associated

with each of them there is a pdf. The econometrician observes realizations of a

random variable x, but can not associate each observation with the pdf that

generated it. That is because for every observation xi, there is a latent random

variable si that determines from which regime that observation was generated. For

every observation i, si can take the value of 1,2,..,J. When the process is in regime j

(si=j), the observed variable xi is presumed to have been drawn from a + ,N ,j j" # .

Hence, the density of xi conditional on the random variable si=j is:

+ , 1, i j
i i

j j

x
f x s j

"
! $

# #

$ %# &' &'" " &' &' &&'( )
where + ,$ -  corresponds to the pdf of a standard normal.

The unobserved regime is presumed to have been generated by a probability

distribution, for which the unconditional probability that si takes on the value of j
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is denoted .j%  According to this setup, it is not difficult to verify (Hamilton, 1994)

that the unconditional density of xi is:

+ , + ,
1

,
J

i j i i
j

f x f x s j! % !
"

" "* (4)

Once the unconditional density is found, the likelihood function can be

constructed and the parameters involved estimated by conventional numerical

methods.8

An interesting feature of this type of models is that we can conduct

inference about which regime was more likely to have been responsible for

producing the observation xi. In this case, we have:

+ , + ,
+ ,

,
Pr , j i i

i i
i

f x s j
s j x

f x

% !
!

!
"

" " (5)

Thus, one can obtain estimates of these probabilities by replacing the

Maximum Likelihood estimator of θ. We applied this methodology allowing for

several values of J.

3.2 Truncation and Thresholds
As Deaton (1998) points out, at least for the case of developing countries, attention

is often focused less on inequality and income distribution than on poverty. One of

the main features that characterize this literature is the construction of poverty

lines and headcount ratios.

Poverty lines are usually constructed resorting to some arbitrary procedure

that includes a type of threshold. One says that a person or a household is poor

when its income is below this threshold, while if the contrary is true, that person is

labeled as non-poor.

This line provides a threshold that considers one population to be the

complement of the other  (see e.g. Kakwani, 1980 or Deaton, 1998). The problem

with this approach is that if we were to use this principle in any meaningful way,

we have to adopt a stance with respect to precisely where that threshold should be.

                                     
8 The parameters to be estimated are the means and standard deviations of the J normal

distributions, and the associated unconditional probabilities π.
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In our case, we define the threshold l as the income that maximizes the

differences between two populations in a specific metric. The difference with the

standard practice is that this threshold is formally estimated and has confidence

intervals that can be assigned to it.

Threshold models have a long-standing tradition in econometrics and are

frequently used in time series (see e.g. Hansen, 1997 and references therein). A

crucial difference between that literature and our application is that in our case,

the threshold variable is the same one that we are describing. In particular, assume

that we consider that all the observation of a variable x that are below a given

threshold l belong to one population, and its complement to another. Belonging to

different populations must imply, in this context, that there are different pdfs

associated with each. Given that the threshold variable is also x we must ensure

that all the observations up to the threshold can not be characterized by the other

distribution. In this context, thresholds imply truncated distributions.

If we denote by + ,f -  and + ,f -  as the pdfs with truncation from above and

below respectively and we impose the assumption of normality, we have:

+ ,
+ ,

+ ,
+ ,+ ,
+ ,+ ,
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For a given value of l, (6) can be optimized using conventional numerical

methods by estimating the parameters that characterize + ,f -  and + ,f -  separately.

An estimator of l can then be obtained by maximizing

+ , + , + , + ,+ , + ,+ , + ,
1

� argmax ln 1 1
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iI -  is an indicator function that takes the value of 1 when ix l2  and 0
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is introduced in order to scale the unconditional pdf of x.  As the optimization of

(7) can be numerically intensive, a direct search can be applied for a grid of l given

that it is naturally spanned by the values of y.

If poverty lines have any empirically meaningful content, �l  would provide a

data driven estimate. We can then evaluate if this dichotomy accommodates the

data better than other alternatives.

3.3 Results
We now discuss the results of applying the estimation techniques previously

outlined. Table 3 and Figure 3 report the results for these specifications.

Table 3

Alternative Densities for yi

Mixture of 2 Mixture of 3 Threshold

AIC 1.380 1.377 1.381

Notes: Mixture of j denotes a mixture of j normal distributions. The threshold estimator for l that

maximized (7) was 4.4 (approximate US$82).

For the case of the mixtures of normal distributions up to 4 distributions

were allowed; while not reported, only marginal improvements were obtained with

mixtures of 4 normal distributions. Finally, for the case of the threshold estimation,
�l  was estimated by direct search (see Figure 3).9

                                     
9 Figure 3 also reports the results of estimating the unconditional density of y using the SNP (Semi

Nonparametric) estimation technique developed by Gallant and Nychka (1987) and Gallant and

Tauchen (1998). Its main advantage is that it provides a flexible functional representation for the

density function.
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Figure 3

Alternative Densities for yi
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Our main findings are two. First, while mixtures of 2 and 3 normal

distributions do a better job on tracking the kernel estimator than any univariate

distribution previously considered, it is difficult to identify if there is more than

one mode present on the data given that the distributions are close to each other.

Second, even though the estimated threshold that dichotomizes two populations

was obtained through a more rigorous approach than the economically arbitrary

poverty line, its point estimate is very similar to the one obtained using the

minimum consumption basket.10 At any rate, this estimator does a very poor job

approximating the unconditional distribution of y.11

Recalling that mixture models allow us to conduct inference about which

regime was more likely to have been responsible for producing a given observation,

we applied (5) together with the estimates reported in Table 4 to obtain the

                                     
10 The estimated threshold is equivalent to a per capita monthly income of approximately US$82,

what would determine an incidence of poverty of around 25% of the individuals. This figure is very

similar to the 23.2% obtained through the consumption basket.
11 The last column of Table 4 reports the parameters estimated for the threshold process; as can be

observed, when the density is truncated from above, the only way to fit the data is by inflating the

first two moments of the truncated normal.
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conditional probabilities of Figure 4. When a mixture of 2 normal distributions is

considered, and given that the parameters associated with the first state have

higher mean and variance, extreme observations (low and high income levels) are

associated with s=1. This reassures our previous finding in the sense of not

favoring a clear-cut separation of the population solely based on income. Even

though the results for the case of a mixture of 3 normal distributions distinguish 3

�populations�, once again the factor that discriminates one from the others can not

be disentangled based on income alone.

Table 4

Parameters Estimated with Alternative Densities for yi

Mixture of 2 Mixture of 3 Threshold

s=1 S=2 s=1 s=2 s=3 s=1 s=2
µ 5.32 4.84 4.30 4.76 5.64 60.70 4.50
σ 1.21 0.68 1.75 0.70 1.03 5.44 1.25
π 0.44 0.56 0.03 0.62 0.35
Notes: All the parameters reported are statistically significant at conventional levels. The

parameters reported for the case of the threshold estimation correspond to a value of l equal

to 4.4 (approximately US$ 82).

Figure 4

Conditional Probabilities for Mixtures

0.0

0.2

0.4

0.6

0.8

1.0

-2 0 2 4 6 8 10

Pr(s=1)

Pr(s=2)

Mixture of 2 Normals

0.0

0.2

0.4

0.6

0.8

1.0

-2 0 2 4 6 8 10

Pr(s=1)

Pr(s=2)

Pr(s=3)

Mixture of 3 Normals



15

Concluding, commonly used parametric alternatives for characterizing the

unconditional distribution of y are easily outperformed by models that allow for

mixtures of distributions, while there is no evidence that income alone can help us

separate populations from different distributions.

4 Income Distribution: Conditional Analysis
The previous sections provided empirical characterizations of the unconditional

distribution of y, which displays strong departure from normality and the possible

existence of more than one mode. It may be correctly argued that these features

can be easily explained once we consider what are the determinants of the level of

income. For example bimodality in the unconditional distribution can be

introduced if there are two groups of individuals that have one characteristic that

difference them. This can be shown, for instance, from the relationship between

income and schooling. Assume that there are two types of individuals, those that

finished high school and those that did not. If the log of the level of income for

individual i is given by:

i i iy S& ' (" 7 7 (9)

where S adopts the value of 1 if the individual finished high school and 0 otherwise,

and ε is a Gaussian disturbance, one can obtain bimodality and important

departures from normality on the unconditional distribution of y if 0.' < 12 The

same kind of argument can be used for any other variable that has an influence on

the determination of y and that has the property of exclusion. In fact, this is

precisely the argument used by Deaton (1998) to motivate bimodality on the

unconditional distribution of y for the case of South Africa (relating S to race.)

The main characteristic of this line of argument is that for instance, the

presence of more than one mode on the unconditional distribution can be

attributed to some observable variable, and that this feature can be uncovered once

we control for it. We take issue with this explanation and present the results for a

conditional analysis of income distribution. To do so, we first show some

                                     
12 In this case, it is not sufficient to have a value of β that differs from zero, but that S itself must

not be unimodal.
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characteristics of variables that are commonly used as �determinants� of the level

of income.

Figure 5

Estimated Joint Density (Education � y)

Figure 5 presents the kernel estimate of the joint pdf of y and the level of

education of the head of the household (measured by years of schooling).13 At least

two features of this estimate are worth noting. First, conditional on a particular

level of income, more than one mode for the years of schooling appears to be

present. As y is positively correlated with years of schooling, at least in principle,

more than one mode on the unconditional distribution of y can be attributed to

this characteristic. Second, while not as evident, for several years of schooling (i.e.

controlling by schooling), there also appears to be more than one mode in y.

                                     
13 If not noted otherwise, the variables used in our conditional analysis refer to observations for the

head of the household. While not reported, results obtained with other variables such as the average

or the maximum value of a characteristic for a household are similar.
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Table 5 presents a quantified cross tabulation between gender and years of

schooling. That is, for each combination of Gender and Education we computed the

average level of monthly per capita income and its coefficient of variation.14 As

expected, a higher level of education of the head of the household is associated with

higher average incomes and, at least for the totals, lower relative dispersion. On

the other hand, there is no clear-cut association between gender and income, given

that for low levels of education (less than 6 years of schooling) the average per

capita income in households with a female head is significantly lower than in

households with a male head. Nevertheless, this gap is reversed for all the other

levels of education. As we will reaffirm later, studies that tend to suggest a causal

relationship between income and gender may be missing the point completely (e.g.

Mideplan, 1999).

Table 5

Quantified Cross-Tabulation

Education Male Female Total

Less than 6 169  (2.001) 148  (1.024) 163  (1.844)

Between 6 and 12 213  (1.362) 238  (1.312) 217  (1.355)

More than 12 644  (1.376) 674  (1.294) 648  (1.365)

Total 273  (1.773) 255  (1.627) 270  (1.751)

Notes: Values in parenthesis correspond to the coefficients of variation.

Consistent with the above, if we focus on traditional measures of inequality

(such as Lorenz curves or Gini coefficients) we observe that the distribution of

income among households with male or female heads is undistinguishable from the

distribution on the total. This is not the case for households with different years of

schooling (Table 6). In particular, income distribution is less egalitarian for

households with higher education, which in turn appears to be more heterogeneous

particularly since the early 1980s (see, Robbins, 1995).

                                     
14 For example, the average monthly income for a person that lived on a household that had a

female head with less than 6 years of schooling was of US$148.
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Figure 6

Lorenz Curves (Gender and Education)
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Given that there are systematic factors (such as education) that are closely

related to the level of income of a household, Table 6 reports the results of

estimations for the conditional density of y.

Table 6

Conditional Distribution of yi

No Mixture Mixture of 2 Mixture of 3

s=1 s=2 s=1 s=2 s=3

Constant 4.358 4.452 3.943 4.417 4.456 3.148

Gender -0.103 -0.149 0.129 -0.103 -0.145 0.616

Schooling 0.090 0.080 0.133 0.048 0.107 0.120
σ 0.884 0.751 1.300 0.613 0.863 1.757
π 1.000 0.822 0.178 0.371 0.591 0.038

AIC 1.296 1.282 1.276
Notes: π = Unconditional probability of belonging to a state. All the variables are statistically at a

1% level.

To analyze the �determinants� of the level of income, several characteristics

of the unit were regressed with y. The second column of Table 6 presents the

results of an exercise of this nature. In contrast to the results of Table 5 where we

found that on the aggregate households with female heads had significantly lower

per capita incomes, Table 6 shows that after controlling by schooling, the
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coefficient associated with gender (1=Male, 0=Female) is negative and statistically

significant. In turn, the return to an additional year of schooling is of 9%.15

We also estimated models in which we allowed for conditional mixtures of

distributions. As Table 6 makes evident, mixture models are preferred to models in

which only one state is considered. More importantly, in both the cases of 2 and 3

mixtures, statistically different returns for years of schooling were found for each

regime.16 In particular, in the case of 2 mixtures, the return of one more year of

schooling for households in the second state is 5% higher than for those in the first.

These differences are even more important if a mixture of 3 distributions is

considered. It is also important to notice that the coefficient associated with gender

varies depending on the state. After controlling by schooling, there is still

(marginal) evidence that unconditionally (with respect to the regime) households

with female heads earn more their male counterparts.

Also, the distributions with higher returns to schooling are also associated

with greater dispersion. If we consider, for example, the mixture of 3 distributions,

the standard deviation of the innovations of the third regime more than doubles

the standard deviation of the other two.

The existence of a mixture of distributions suggests a sort of segmentation.

Given that even after controlling for other observed variables we still find evidence

of mixtures, it could be suggested that some other unobservable variable that

presents some sort of bimodality may have been omitted. However, variables such

as ability, beauty, race, health and others we may think of, are not expected to

display that feature for the case of Chile. In this sense, the explanation behind the

mixture of distributions that we observe may be found on the labor literature on

segmentation (e.g. Dickens and Lang, 1985; Basch and Paredes, 1996). This

                                     
15 While not reported, several other characteristics such as age (both linear and quadratic) and

years of experience on the job were also included.
16 This is possibly a reason why non-linear terms of years of schooling (such as quadratic terms)

may appear as statistically significant when no mixtures are allowed. In the case of mixtures, there

is a natural interpretation for different returns of schooling, while increasing returns in the case of

no mixtures is difficult to justify but easy to obtain when the true process is generated from

mixtures.
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argument is valid not only for labor market regulation but also, as suggested by

Harberger (1971), it can be applicable to regulation in education, where focusing on

the supply may promote segmentation.

The results of Table 6 can also be applied to obtain similar results than

those found in Figure 4. While not reported, it is not difficult to anticipate that for

any given level of education, it is more likely that households with lower income

belong to states of lower return to schooling. This suggests that policies that are

aimed to increase the level of schooling of the poor may not be as desirable as

policies that increase their return to schooling. The next section describes a simple

exercise that can help us to quantify the magnitude of these effects.

5 Two Experiments
A main result of this paper is that mixtures of distributions better characterize the

conditional distribution of income than alternatives with no mixtures. The

consequences for distribution and poverty policies are key at least in two respects.

First, policies would affect differently depending upon the regime to which a given

household belongs. For instance, if we consider the results obtained with mixtures

of 3 distributions, one additional year of mandatory schooling would increase the

household per capita income in 4.8%, 10.7% and 12.0% depending on the regime a

household belongs to. Second, if we associate the unobservable state s to �quality�

of education (or any other variable not directly observed), we can measure the

effects on a household of moving from, say, the first regime to the second.

This section conducts two experiments that are intended to shed some light

regarding the effect of policies aimed at reducing poverty and inequality. In the

first, we consider increasing the minimum years of schooling of the head of the

household. In the second, we consider improving the quality or return of schooling

of households with low returns. In turn, the dimensions on which the effects of

these experiments are evaluated are two: first, we provide an approximation for the

valuations of each policy by part of the households themselves; and second, we

discuss the possible effects of these experiments on income inequality.

Even when these exercises may be considered as crude approximations, they

are valuable because they do not only provide insights with respect to which type
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of �policies� would be preferred by the households, but also on the nature of the

phenomenon of persistently high inequality that is present in Chile.

First consider increasing the minimum years of schooling that every head of

household has. Assume that household i has Xi as its vector of characteristics; if

this household belongs to regime j, its expected income is given by:

+ , 20.5, j i jX
i i iE Y X s j e' #7=" " (10)

where + ,2,j j' #  are the coefficients associated with regime j that were reported on

Table 6.17 Given that s is unobservable, we can compute the �unconditional�

expectation of (10) as follows:

+ , + ,
1

,
J

i i j i i i
j

E Y X E Y X s j%
"

" "* (11)

Let m
iX  be the vector of characteristics X of household i with the caveat

that if that household has less than m years of schooling, that characteristic is

replaced by m on X. If the household had more years of schooling than m, m
iX  and

Xi coincide. In either case, we define the �unconditional� expected income for

household i when m is set as the minimum years of schooling as:

+ , + ,
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m m
i i j i i i
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E Y X E Y X s j%
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Denoting by mA  to the average valuation of a policy that increases the

minimum years of schooling to m we obtain:

+ , + ,
1

1

N
m

i i i i i
m i

N

i
i

w E Y X E Y X
A

w

"

"

5 6#8 9: ;
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and apply (13) for several values of m.

The second experiment consists on increasing the return to education, while

leaving the years of schooling unaffected. We specialize this exercise to the extreme

case in which the probability of observing is J"  is set equal to 1. That is, all the

individuals in the population have the same returns to schooling (returns of the

last regime). In this case, the average valuation of such a policy (B) is given by:

                                     
17 Lognormality of Y was imposed in order to compute (10).
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Equations (13) and (14) provide a simple way to compare the valuation that

the �average� household would have for each policy. The results of such a

comparison are reported in Figure 7.

Figure 7

Valuations of Alternative Policies (monthly per capita US$)
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The average valuation of the experiment aimed to increase the return of

schooling is equivalent to an increase of US$246 and US$355 on the monthly per

capita income on the average household, depending on whether a 2-regime or a 3-

regime mixture is considered. These figures are substantial, and at least for the

case of a mixture of 3 normal distributions implies a valuation that exceeds the

average per capita income of the households reported in Table 1 (US$270). At any

rate, the values of m that would make the average household indifferent between

the first and second experiments are 16.5 and 18.5 respectively, which would

roughly be equivalent to having every head of household having finished college or

having been graduate students.

Another exercise that was also conducted refers to how inequality would be

affected by each experiment. For that purpose we device a Monte Carlo experiment

in which 1,000 artificial samples were generated. Each sample had 1,000 households

that were drawn randomly in direct proportion to the distribution of characteristics

of the population (years of schooling, gender, etc). Each household (with its
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characteristics) was then randomly assigned to a given regime according to the

probabilities reported on Table 6. A realization of per capita income was then

drawn using a random realization of a standard normal together with the vector of

characteristics attributed and the parameters estimated for the corresponding

regime.

Once an artificial sample (with 1,000 households) was generated, we

computed its Gini index according to (1) but setting wi=1 and N=1,000. For each

artificial household generated, we also applied the two experiments previously

described. Care should be taken in this case, as for the exercise to be meaningful,

the Gaussian random realization corresponding to the innovation on income has to

be the same when an experiment is applied and when it is not. For the case of the

experiment that increases the minimum years of schooling, we set m=12 and

m=16.

Table 7

Gini Indexes for Alternative Policies (95% Confidence Intervals)

Benchmark First Policy Second Policy

m=12 m=16

Mixture of 2 0.533 � 0.655 0.528 � 0.650 0.519 � 0.643 0.651 � 0.726

Mixture of 3 0.535 � 0.666 0.531 � 0.663 0.520 � 0.652 0.663 � 0.755
Notes: This Table reports 95% confidence intervals for Gini indexes computed from alternative

policies. Benchmark = No policy is carried out. All the figures were constructed from Monte

Carlo realizations of 1,000 artificial samples of households. The 95% empirical confidence

intervals correspond to the 25th and 975th sorted Gini indexes.

Table 7 reports the 95% empirical confidence intervals for these Monte Carlo

experiments. Several results are of interest. First, even unrealistically important

changes in m associated with the first experiment provide only slight and

marginally significant improvements on the Gini index. In fact, for all the cases

analyzed, the 95% confidence intervals include the point estimate of the Gini index

reported on Table 1 (0.551). This means, that policies that focus on increasing the

level of schooling without modifying its quality are not only less valued by the

households, but also have only second order effects in terms of diminishing
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inequality. On the other hand, highly regarded policies such as the second produce

the unambiguous result of increasing inequality. This result is easy to explain, once

we realize that the last regime in every mixture does not only have the higher

return to years of schooling but also a substantially higher variance.

6 Concluding Remarks
This paper provides a systematic empirical characterization of income distribution

in Chile by using flexible forms. We tested for the possible existence of an income

threshold and did not find statistical evidence of its existence, suggesting that

poverty lines defined solely in terms of the level of income may be meaningless. We

also found that mixtures of distributions performed better than simple parametric

alternatives, feature that is consistent with the literature on labor markets that

suggest that segmentation and exclusion may be behind the determinants of income

in Chile. In particular, we found more than one population with different returns to

human capital.

This finding may not only call for additional efforts to characterize income

dispersion than is possible through the use of traditional indexes (such as Gini and

Theil), but also provide insights on the most effective directions for policies aimed

at reducing poverty and income inequality. The success of targeted policies is

substantially reduced when it is difficult to identify the population from which a

family showing an income just below a given level comes from. For instance, the

impact of policies, such as improving the quality of education or increasing the

years of schooling depends on the returns to schooling on each population.

We performed two exercises that may be associated with policies that affect

the quality of education and policies affecting the number of years of schooling,

arriving to the following conclusions. First, focusing on policies that reduce

heterogeneity, like improving the quality of education, is more valued and effective

in reducing poverty than increasing its quantity. However, such a policy does not

imply a reduction in inequality and, on the contrary, may increase it. Second,

policies traditionally followed in Chile to deal with poverty, like increasing

mandatory schooling, may have an extremely low effect on reducing income

inequality.
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