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Abstract 
 
Many authors have pointed out the importance of determining the impact of ridesourcing 
on vehicle kilometers traveled (VKT), and thus on transport externalities like congestion. 
However, to date there is scant evidence on this subject. In this paper we use survey 
results on Uber use by residents of Santiago, Chile, and information from other studies to 
parameterize a model to determine whether the advent of ridesourcing applications 
increases or decreases the number of VKT. Given the intrinsic uncertainty on the value of 
some model parameters, we use a Monte Carlo simulation for a range of possible 
parameter values. Our results indicate that unless ridesourcing applications substantially 
increase average occupancy rate of trips and become ridesharing, the impact is an 
increase in VKT. We discuss these results in light of current empirical research in this area. 
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1. Introduction 
 
The advent of ridesourcing technologies is rapidly changing the urban mobility patterns 
and the passenger transport industry in many cities around the world. We follow Rayle et 
al. (2016) and refer to ridesourcing services as profit motivated on-demand ride services 
through a smartphone application, as opposed to non-profit ride-sharing or car-pooling 
services and traditional taxi services. As summarized by Henao (2017), in the literature 
there are several names to refer to ridesourcing platforms, such as ride-hailing, e-
dispatching, ride-booking, on-demand rides and Transportation Network Companies 
(TNCs), among others. Regulators in many jurisdictions are grappling with the legal and 
policy implications of these new services as they clearly violate existing taxi regulations 
but are nonetheless highly valued by users. 
 
Ridesourcing services raise many issues including their impact on passenger safety, 
universal accessibility requirements, insurance liability, driver labor protection and privacy 
of information. They are also an opportunity to improve service quality, mobility and the 
incidence of “driving while intoxicated” (DWI) felonies1. In many large cities with already 
high congestion levels, the impact of ridesourcing applications on vehicle kilometers or 
miles traveled (VKT or VMT) is of paramount importance.    
 
In general, a key to understand the effect of ridesourcing application on transportation 
externalities is to estimate which modes are being substituted. An analysis of the most 
common cases will illustrate these ideas. When comparing ridesourcing with traveling 
with one’s own car, there are two arguments by which ridesourcing platforms can reduce 
VKT: first, ridesourcing significantly reduces or eliminates altogether the time and distance 
traveled in search of parking, a relevant issue as this cruising for parking behavior is a 
major contributor to congestion in several cities (Shoup, 2006). Second, when someone 
owns a car, they pay a high fixed cost of capital (acquisition of the vehicle), relative to 
which the marginal cost for the use of the vehicle is very low. Therefore, some people will 
tend to make more motorized and/or longer trips if they own a car, relative to the trips 
made by a person who relies on ridesourcing, where the entire transport cost is associated 
with the trips made and their length. On the other hand, there is a factor that counteracts 
these two arguments: a car trip is generally door-to-door (except for the cruising for 
parking phenomenon), while ridesourcing trips include the extra travel made by the driver 
from somewhere else to the passenger's starting point, plus the passenger-free traffic the 
car adds at the end of the trip (when it travels to look for another passenger). Then, the 
net effect of ridesourcing applications on externalities such as congestion, pollution and 
accidents, compared to the private car, depends on the size of these opposing effects. 
 
Compared to traditional taxis, ridesourcing platforms have the advantage of reducing the 
number of kilometers that drivers travel without passengers. Finally, in comparison with 

                                                      
1 On this last issue see Greenwood and Wattal (2015) who provide evidence using data from 
California that Uber reduces alcohol/DWI homicides. See also Dills and Mulholland (2016).  
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public transportation, cycling or walking, a substitution towards ridesourcing increases 
vehicle kilometers on the street, unless the substitution of local bus trips is more than 
compensated by an increased number of trips that combine ridesourcing with longer rail 
or express bus services, in replacement of car trips (the so-called ‘last mile problem’)2. 
Therefore, taking all these effects into account, it is impossible to predict ex-ante the 
effect of ridesourcing platforms on transport externalities. What is clear though is that 
such effects are not constant throughout the day, calling for flexible regulation of these 
services, including the possibility of introducing a fee on ridesourcing that is related to the 
number of vehicle kilometers added in different time-period and locations. 
 
There is a small but growing literature on the impact of ridesourcing applications on 
congestion. Henao (2017) cites the reluctance of commercial ridesourcing companies to 
share meaningful data as one of the reasons behind the scarcity of academic studies on 
the subject. The review carried out in New York (City of New York, 2016) finds that e-
dispatch services do not appear to be driving the increasing severity of vehicle congestion 
in the Central Business District (CBD). However, it also recognizes that this may change in 
the future and the impact will depend on the proportion of passengers that substitute 
from car-based modes as opposed to public transit.3  
 
The lack of data explains why various authors have not been able to conclusively answer 
the question of whether ridesourcing applications increase or reduce congestion. For 
example, a study undertaken for the city of Vancouver (Ngo, 2015) states that there is 
inconclusive evidence as to whether these applications increase or decrease vehicle 
kilometers traveled and thus congestion. 
 
Rayle et al. (2016) also remain neutral as to the impact of these applications on 
congestion. However, their intercept survey of San Francisco during May and June 2014 
indicates that --up to that date-- there was no evidence that these services had influenced 
car ownership behavior. Their results also indicate that a small amount of travel has been 
induced by ridesourcing applications. More troubling was their finding that 33% of users 
declared that they would have otherwise used bus or rail to make their surveyed 
ridesourcing trip, evidence that would imply a negative impact of ridesourcing 
applications on traffic externalities such as air pollution and congestion. Rayle et al. (2016) 
conclude that more research is required and that the impact of these applications on 
congestion should consider the “induced travel effect, travel made by drivers without 
passengers, potential substitution from public transit, and the impact of ridesourcing on 
users' driving.”  
 

                                                      
2 An optimization approach to integrate ridesourcing with public transportation is introduced and 
applied by Chen and Nie (2017).  
3 City of New York (2016) does recognize that ridesourcing applications have eroded an important 
source of transit funding (special levy on taxi rides) in spite of the fact that ridesourcing trips are 
subject to an 8,875% sales tax, 0.375% of which go directly to the Metropolitan Transit Authority.   
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Hensher (2017) also points out at the potential negative effects of substitution away from 
mass transit, with no quantitative data to measure the size of this effect. He also makes 
the point that an impact of these applications on car ownership may not reduce 
congestion. In the end, a trip in a small vehicle is an addition of vehicle kilometers traveled 
(VKT) irrespective of who owns the vehicle. However, ridesourcing does have an impact on 
reducing the demand for parking, as previously discussed, which in turn is an opportunity 
to relocate parking spaces, for example, to mixed land uses (Henao and Marshall, 2017). 
 
A roundtable discussion by OECD/ITF (2016) concluded that ridesourcing applications 
represent only a small fraction of overall vehicle kilometers and thus it does not make 
sense to target this policy issue if overall vehicle congestion was not also addressed. 
However, this may change in the future and OECD/ITF (2016) recognize that addressing 
the issue of the impact of ridesourcing applications on congestion may be important in 
certain areas and time periods. 
 
More rigorous empirical evidence is provided by Hall et al. (2017) and Li et al. (2016).  Hall 
et al. (2017) note that ridesourcing applications can solve the last mile problem, related to 
access to and from transit services. As such, these two services may be complementary 
rather that substitute. By using a difference in difference econometric approximation for 
the United States, Hall et al. (2017) estimate that, on average, there is an increase in 
public transportation use thanks to Uber, with heterogeneity noted as Uber reducing 
public transportation ridership by 5.7 percent in smaller cities while increasing public 
transit ridership by 0.8 percent in the larger cities. Therefore, the predominance of the 
complementary or substitute nature of the relationship between Uber and public 
transportation is context dependent. The much lower fare of public transportation relative 
to Uber is suggested as one of the reasons for travelers using both modes as 
complements. However, Clewlow and Mishra (2017) estimate an average reduction of 6% 
in transit use due to ridesourcing in seven major US cities, and that buses and light rail 
lose demand, while commuter rail increases ridership due to ridesourcing use. The 
potential of ridesourcing to integrate with mass transit is further discussed at length by 
Iacobucci et al. (2017) and Dinning and Weisenberger (2017). 
 
Li et al. (2016) use a difference in difference estimator approach on annual traffic data of 
US urban areas. They find that the appearance of Uber is associated with a reduction in 
traffic congestion at a metropolitan scale. As an underlying explanation, they conjecture 
that ridesourcing applications such as Uber have the potential to reduce car ownership, 
increase car occupancy rates due to ride sharing and delay trips during peak hours (due to 
surge pricing).  However, the separate effect of the standard Uber standard and Uberpool 
(the carpooling alternative that exist in some cities) could not be disentitled and the 
results do not preclude the possibility that in some periods and areas within cities (peak 
times in financial or commercial districts) ridesourcing use may indeed increase 
congestion. 
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Clewlow and Mishra (2017) conjecture that ridesourcing has most likely increasing VKT in 
major American cities, as they find that between 49% and 61% of ridesourcing trips would 
not have been made at all or would have been made by walking, cycling or public 
transportation. However, the authors recognize that net VKT changes are unknown. They 
also correctly note that to quantify this impact one must know the mode ridesourcing 
applications are substituting from (driving, transit, walking, cycling), the number of 
passenger miles in ridesourcing trips, and the additional kilometers traveled without 
passengers by cars linked to these applications. These effects are considered in this paper 
as discussed further below. Finally, Henao (2017) estimates a notorious increase of 84.6% 
in VKT due to ridesourcing in Denver, Colorado, based on 308 ridesourcing trips driven and 
surveyed by the author himself. 
 
The link between ridesourcing applications and congestion is not only an academic 
matter. It has important policy implications. Several cities, including Seattle, Chicago, and 
Portland in the US and Mexico City, charge special levies on ridesourcing application 
services to finance special accessibility or mobility funds (Ngo, 2015). NYC is also 
considering introducing such a levy (City of New York, 2016). More interesting, there is a 
growing tendency to link these charges to congestion. This is the case of Sao Paulo, Brazil, 
where the municipal authorities recently introduced a charge to application based 
services according to the number of kilometers traveled. The stated purpose of the 
municipal authorities is to differentiate this charge according to the congestion caused by 
zone and time of day. Similar legislation has been proposed in Chile. A bill currently in 
congress would legalize ridesourcing applications but would levy a kilometer based charge 
based on traffic conditions by geographical zone and time of day. Thus, a deeper and 
more precise understanding of the link between ridesourcing applications and congestion 
will be paramount to guide these new regulatory frameworks worldwide.    
 
The aim of the present paper is to expand the nascent literature on the effect ridesourcing 
applications on travel behavior and traffic externalities along two lines. First, we present a 
multimodal model to analyze the different parameters that determine the impact of these 
new application-based services on VKT. The literature has discussed several different 
channels whereby these services can affect total VKT, such as the passenger occupancy 
rates among alternative transport modes, substitution from high occupancy modes such 
as public transportation, induced travel, vehicle kilometers in taxi and ridesourcing 
services without passengers, the impact of private vehicles searching for parking, among 
others. We hope to clearly spell out how each of these factors interacts to determine the 
overall impact on VKT.  
 
Second, we parameterize this model using the information gathered from an online survey 
regarding travel patterns and use of Uber in Chile. There were 1,600 respondents, 91% of 
which were from Santiago. Although this was a voluntary response survey and therefore 
the sample is not random and potential biases may be present, further below we contrast 
the data with the 2012 Origin Destination Survey for Santiago. Furthermore, in the 
simulation approach used in this paper we introduce ways to tackle potential biases. Our 
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sample is much larger than the interception survey of Rayle et al. (2016) and it covers all 
time periods.4 The survey in-itself reveals interesting information regarding the motivation 
and evaluation of Uber by Chilean users, and that ridesourcing has different effects on 
travel behavior at day and night. And to our knowledge it is the first-time information of 
this kind is presented from a country or city outside the United States.  
 
We use the survey results from Santiago to parameterize the model. However, some 
parameters are not covered by the survey and are borrowed from the literature. Since 
there is uncertainty regarding most parameters, we assume a range of values for each 
case and undertake a Monte Carlo simulation in order to examine the likely impact of 
ridesourcing applications on VKT in Santiago. Besides providing survey results for a case 
outside the United States, the model developed in this paper allows for a more detailed 
understanding of what could be driving the aggregate results of papers such as Li et al. 
(2016).    
 
The paper is organized as follows. The next section presents the model. We then describe 
the survey and results. Following that we explain how the model was parameterized and 
we present the Monte Carlo results. The paper ends with a summary of our main 
conclusions, policy implications and areas for further research. 
 

2. Conceptual analysis of the impact of ride sharing applications on vehicle 
kilometers traveled 

 
We model the effect of ridesourcing on of the number of vehicle kilometers traveled (VKT) 
by different transport modes, as the most common traffic externalities -like congestion, 
pollution and accidents- are directly related to VKT. We define Va as the number of trips in 
private car use, Vapp as the number of trips in ridesourcing services, Vt as the number of 
trips in taxis, and Vb as the number of trips in bus.5  
 
There are certain specificities of each mode that must be taken into account in order to 
transform trips into vehicle kilometers. For the private car mode, the number of VKT will 
have to consider the length of the average trip (La) and the average occupancy rate in this 
mode (Oa). In addition, private cars also congest the roads when looking for a parking 
space (e.g., Arnott and Inci, 2006; Shoup, 2006). We take this effect into account by using 

a multiplier (>0) on the average car trip length.  Thus, total vehicle kilometers in the car 
mode will be: 
 

𝑉𝐾𝑎 = (1 + 𝜃) ∙ 𝐿𝑎 ∙
𝑉𝑎

𝑂𝑎
             (1) 

 

                                                      
4 Rayle et al. (2016) obtain 380 completed responses and their interception survey was undertaken 
during two months on two weekdays (later three) evenings and Saturday evenings.  
5 We assume that other modes such as cycling or walking do not cause congestion.  
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Where the number of cars traveling is 𝑉𝑎 𝑂𝑎⁄  . The analogous relationship for taxi vehicle 
kilometers is: 
 

𝑉𝐾𝑡 = (1 + 𝜇𝑡) ∙ 𝐿𝑡 ∙
𝑉𝑡

𝑂𝑡
           (2) 

 

where t is a parameter that accounts for kilometers traveled empty while looking for 
passengers (as a proportion of kilometers traveled with passengers on board). 
 
Bus vehicle kilometers is given by: 
 

𝑉𝐾𝑏 = 𝛽 ∙ 𝐿𝑏 ∙
𝑉𝑏

𝑂𝑏
           (3) 

 
where β is an equivalence factor between buses and light vehicles. This parameter will be 
greater than 1 and reflects the fact that one bus will use the space equivalent to several 
cars, depending on its size (for example, 1 bus=2 pcu – passenger car units). 
 
Vehicle kilometers using a ridesourcing application are given by: 
 

𝑉𝐾𝑎𝑝𝑝 = (1 + 𝜇𝑎𝑝𝑝) ∙ 𝐿𝑎𝑝𝑝 ∙
𝑉𝑎𝑝𝑝

𝑂𝑎𝑝𝑝
           (4) 

 

where app is as in the case of taxis a parameter that considers that vehicles will 
circulate without passengers some extent. We expect this parameter to be lower than in 
the case of taxis (i.e., 𝜇𝑎𝑝𝑝 < 𝜇𝑡), owing to the use of an application to find customers 

rather than cruising the streets looking for them, and to GPS-based shortest path routing.6 
 
An average trip has an origin-destination shortest path distance 𝐿̅. However, the actual 
number of kilometers traveled between the origin and destination will differ between 
each mode. For example, in a bus, it is probable that the trip will be longer since buses run 
on fixed routes and these will probably not coincide exactly with the shortest path 
between the origin and destination of the trip.7 Therefore, the number of kilometers 
traveled by bus will be: 
 

𝐿𝑏 = (1 + 𝜏𝑏) ∙ 𝐿̅        (5) 
 

where b is a parameter reflecting the extra vehicle kilometers in bus trips above the 
shortest path of the trip. 

                                                      
6 As traditional taxis also incorporate smartphone based applications to contact costumers, as it is 
occurring in many cities (e.g., the app Easy Taxi in Chile), these two parameters will tend to 
converge. 
7 However, this may imply more walking to and from bus stops rather that an increase in the 
number of vehicle kilometers. 
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Likewise, for private car travel, since users pay a fixed cost rather than a variable charge 
per kilometer and that not all drivers GPS or similar devices for routing, it may be that trip 
length is longer. Therefore, the trip length is: 
 

𝐿𝑎 = (1 + 𝜏𝑎) ∙ 𝐿̅       (6) 
 
In the case of taxis, since they do not all use application based GPS systems, at least in 
Santiago, we also expect trip length to be somewhat higher than the shortest distance 
between origin and destination: 

𝐿𝑡 = (1 + 𝜏𝑡) ∙ 𝐿̅      (7) 
 
For ridesourcing services we assume that they take the shortest route possible and 
assume it is equal to 𝐿̅. 
   
With these assumptions, the total number of vehicle kilometers traveled will be: 
 

𝑉𝐾𝑡𝑜𝑡 = 𝑉𝐾𝑎𝑝𝑝 + 𝑉𝐾𝑡 + 𝑉𝐾𝑝 + 𝑉𝐾𝑏           (8) 

 
or, 
 

𝑉𝐾𝑡𝑜𝑡 = 𝐿̅ ∙ [
(1+𝜇𝑎𝑝𝑝)∙𝑉𝑎𝑝𝑝

𝑂𝑎𝑝𝑝
+
(1+𝜇𝑡)∙(1+𝜏𝑡)∙𝑉𝑡

𝑂𝑡
+
(1+𝜃)∙(1+𝜏𝑎)∙𝑉𝑎

𝑂𝑎
+ 𝛽 ∙

(1+𝜏𝑏)∙𝑉𝑏

𝑂𝑏
]       (9) 

 
Taking the derivative of expression (9) with respect to the number of ridesourcing trips, 
Vapp, will indicate how total vehicle kilometers change when ridesourcing applications 
increase ridership, at the expense of other modes:      
 

𝑑𝑉𝐾𝑡𝑜𝑡
𝑑𝑉𝑎𝑝𝑝

= 𝐿̅ ∙
(1 + 𝜇𝑎𝑝𝑝)

𝑂𝑎𝑝𝑝⏟        
𝑟𝑖𝑑𝑒𝑠𝑜𝑢𝑟𝑐𝑖𝑛𝑔 𝑒𝑓𝑓𝑒𝑐𝑡

+ 𝐿̅ ∙
(1 + 𝜇𝑡) ∙ (1 + 𝜏𝑡)

𝑂𝑡
∙
𝑑𝑉𝑡
𝑑𝑉𝑎𝑝𝑝⏟                  

𝑡𝑎𝑥𝑖 𝑒𝑓𝑓𝑒𝑐𝑡

+ 𝐿̅ ∙
(1 + 𝜃) ∙ (1 + 𝜏𝑎)

𝑂𝑎
∙
𝑑𝑉𝑎
𝑑𝑉𝑎𝑝𝑝⏟                  

𝑐𝑎𝑟 𝑒𝑓𝑓𝑒𝑐𝑡

+ 𝐿̅ ∙ 𝛽 ∙
(1 + 𝜏𝑏)

𝑂𝑏
∙
𝑑𝑉𝑏
𝑑𝑉𝑎𝑝𝑝⏟              

𝑏𝑢𝑠 𝑒𝑓𝑓𝑒𝑐𝑡

 

(10) 
 
Equation (10) can be interpreted as the change in total VKT due to the addition of one 
extra trip by ridesourcing. On the one hand, there is an increase in VKT given by the 
average number of vehicle kilometers added by the ridesourcing vehicle used in the trip, 
which is named as ‘ridesourcing effect’ (the first term of the right-hand side). This direct 
increase in VKT is counterbalanced with a reduction in the expected number of kilometers 
in the competing modes taxi, private car and bus. These taxi, car and bus effects are equal 
to the average number of kilometers that a single trip on these modes add to the streets, 
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times the substitution rates 
𝑑𝑉𝑡

𝑑𝑉𝑎𝑝𝑝
, 

𝑑𝑉𝑎

𝑑𝑉𝑎𝑝𝑝
 and 

𝑑𝑉𝑏

𝑑𝑉𝑎𝑝𝑝
 between trips in ridesourcing 

applications and trips in taxi, car and bus, respectively.  
 
The modal substitution rates in equation (10) are expected to be negative, because the 
increase in VKT by ridesourcing will come from a reduction in VKT by other road modes. 
Moreover, the absolute value of the summation of these three substitution rates is less 
than one; 
 

|
𝑑𝑉𝑡

𝑑𝑉𝑎𝑝𝑝
+

𝑑𝑉𝑎

𝑑𝑉𝑎𝑝𝑝
+

𝑑𝑉𝑏

𝑑𝑉𝑎𝑝𝑝
| < 1   (11) 

 
because some trips in ridesourcing applications are new trips or come from modes that do 
not increase VKT, like metro (subway), walking and cycling. The fact that a combined 
ridesourcing-subway trip may replace a trip previously made fully by private car (therefore 
increasing metro ridership and reducing VKT) is numerically included in a scenario of 
Section 4. 
 
Thus, the last three terms of the right-hand side of equation (10) will be negative while 
the first term is positive. If expression (10) is positive (negative), ridesourcing applications 
increase (reduce) total vehicle kilometers. Average trip lengths and occupancy rates of all 
modes play a key role in the final outcome. 
 
Equation (10) assumes that there are supply changes in taxis and buses as customers 
substitute trips towards ridesourcing applications, in a way that average occupancy rates 
in taxis and buses remain constant. Thus, it is a medium-run evaluation of the impacts of 
ridesourcing applications on vehicle kilometers. In the short-run, if the same number of 
taxis and buses are circulating (and only private car car kilometers are saved by 
ridesourcing use), then the probability that ridesourcing applications increase VKT is much 
higher than what equation (10) would predict. 
 
3. Uber use survey 
 
Next we describe the data used to parameterize the model. We first present the survey 
results, while other parameter values are discussed and shown in Section 4. An online 
survey to understand patterns of Uber use in Chile was undertaken between 11th and 20th 
January 2017. The questionnaire was made in Google Forms and was distributed online 
through email lists, social media and internet forums. It was addressed to Uber users, this 
being the first and most widely used ridesourcing application in Chile, although results are 
extensible to other ridesourcing applications. In total, there were 1,600 completed 
surveys, 91% of which were from people residing in Santiago (Table 1). This is expected 
since Uber was first introduced in the capital and Santiago is by far Chile’s most populated 
city.  
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Table 1: Survey responses by city residence  

City of Residence Observations Percentage 

Santiago 1,458 91% 

Greater Valparaiso 58 4% 

Greater Concepción 45 3% 

Other 39 2% 

Total 1,600 100% 

 
Table 2 presents descriptive statistics of the responses and compares them to information 
from the 2012 Origin Destination Survey (ODS) of Santiago8 (SECTRA, 2014; Muñoz et al., 
2015), both overall and among taxi users. In order to make the comparison meaningful 
only survey observations from Santiago are used.  
 
From Table 2 we can see that survey respondents were overwhelmingly young, over 75% 
less than 36 years old. This does not reflect the overall age composition of the 2012 ODS 
for Santiago. Even if only people taking taxi trips are considered, the age distribution is 
very different. Among taxi users in the 2012 ODS over 50% are 51 years or older. This age 
composition, if it were representative of Uber users, mirrors findings from the Unites 
States (Rayle et al., 2016, Clewlow and Mishra, 2017; Henao, 2017), where ridesourcing 
apps are mainly used by younger people with higher income than the average population. 
In our case, age composition may also be influenced by the sampling method, as younger 
people are more familiar with modern digital technology and they are also more likely to 
use social media and thus answer our survey. The fact that the sampling method may 
overrepresent students and young users is accounted for in a scenario in Section 4.  
 
Our survey results also indicate a higher response among male users while the 2012 ODS 
is more balanced gender wise. It is interesting to note that females are more intense taxi 
users compared to males (63% to 37%), perhaps due to security concerns in other 
transport modes. 
 
 
 
 
 
 
 
 
 
 
 

                                                      
8 In Santiago, origin destination surveys that cover the whole metropolitan area have been 
conducted by the government every 10 years. 
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Table 2: Descriptive Statistics of the survey compared to the Santiago 2012 Origin 
Destination Trip survey 

 Uber survey 
(Santiago) 

Overall 2012 ODS Taxi users 2012 
ODS 

Age N % N % N % 

Less than 20 46 3.1% 4,054 7.7% 45 2.7% 

Between 20 and 35 1,070 72.6% 15,203 28.8% 320 19.4% 

Between 36 and 50 281 19.1% 11,870 22.5% 425 25.8% 

Between 51 and 65 61 4.1% 11,630 22.1% 347 21.1% 

Over 65 16 1.1% 9,988 18.9% 509 30.9% 

 1,474  52,745  1,646  

Gender       

Male  851 57.7% 28,375 47.2% 659 36.9% 

Female 623 42.3% 31,679 52.8% 1,128 63.1% 

 1,474  60,054  1,787  

Monthly Income (US $)       

No response 14 0.9% 1,977 5.7% 58 4.5% 

Less than $312 331 22.5% 7,333 21.3% 275 21.4% 

$312 to $624 129 8.8% 13,284 38.5% 397 30.9% 

$625 to $937 101 6.9% 6,377 18.5% 217 16.9% 

$938 to $1,562 214 14.5% 3,587 10.4% 180 14.0% 

$1,563 to $3,125 393 26.7% 1,557 4.5% 128 10.0% 

Over $3,125 292 19.8% 366 1.1% 29 2.3% 

 1,474  34,481  1,284  

Family car ownership       

0 408 27.7% 11,074 60.6% 1,181 66.1% 

1 625 42.4% 5,787 31.7% 473 26.5% 

2 or more 441 29.9% 1,403 7.7% 133 7.4% 

 1.747  18,264  1,787  

Source: Own elaboration from Santiago’s Origin Destination Survey (SECTRA, 2014). Income from 
the 2012 ODS was inflated using the change in the Consumer Price Index between July 2012 and 
July 2017. Original income was presented in Chilean Pesos (CLP). The exchange rate at the time of 
writing this was CLP 640 per USD. Observations reporting zero monthly income were excluded. 
The 2012 ODS frequency weights were not used. However, the change in the frequencies are small 
if these weights are used to tabulate the data. Only persons over 15 years of age were considered 
in the age frequency data for the 2012 ODS. Taxi users in the 2012 ODS include those that use taxi 
in one of the stages of multimodal trip. 

 
Our survey responses are also more skewed towards higher income individuals and from 
households that tend to own cars. Over 70% of respondents come from households with 
at least one car, while less than 40% of households own cars among the general 
population and even less among taxi users. Once again, we cannot be sure whether these 
differences are due to the differing composition of Uber users in Santiago or whether it is 
due to the response rate to our survey. As mentioned above, we conjecture that there is a 
bit of both. 
 
The survey included three categories for the intensity of Uber use. Low frequency users 
were those that claimed to “use it very few times” overall. Medium frequency users are 
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those that said to “use it very few times per month”, while high frequency users where 
those that claimed to “use it every week, almost every day or every day”.   
 
Figure 1 shows the intensity of use by income groups. It can be seen that the intensity of 
use increases with income. This may be due to the larger cost of an Uber trip relative to 
the public transport fare in Santiago (around 1 US dollar), lower access to smartphones 
with an active data account among lower income households and probably because in 
Chile lower income individuals do not have access to credit cards (although in 2016 Uber 
started to accept cash for their service). However, it is striking that there are many lower 
and middle-income individuals (relative to the survey sample) that are high or medium 
intensive users of this application; it is expected that tertiary education students are in 
this group.   
 

 
Figure 1: Frequency of ridesourcing use versus personal income 

 
Figure 2 shows the answers to the question “What are your reasons to use Uber?” in 
which respondents could answer more than one alternative. The most important reasons 
for using Uber are the ease of payment9, trip cost, the transparency of the charging 
system compared to taxi-meters, and the possibility of identifying the driver and rating 
his/her performance. Other important motives include short waiting times, lack of 
convenient public transportation, not having to drive after drinking alcohol and the 
perception of the service being more secure than other modes.  
 

                                                      
9 Ease of payment was also the number one reason to use ridesourcing apps in the San Francisco 
survey reported by Rayle et al. (2016). 
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Figure 2: Respondents’ reasons to use Uber 

 
The next question is about trip purposes for which respondents use Uber. Figure 3 depicts 
that more than 70% of respondents use Uber for social and recreational purposes like 
going to bars, restaurants and parties, while Uber is used by less than 30% of respondents 
for compulsory activities, like trips to work or study. This finding is in line with the actual 
timing of Uber trips in Santiago, as the weekly peak of Uber use is on Fridays and 
Saturdays between 9 PM and 12 AM, according to detailed trip timing information given 
by Uber to a local newspaper10. This period is the usual time in which people go out on 
weekends in Santiago.   
 

                                                      
10 “Uber detecta mayor aumento de viajes entre zonas periféricas y el centro en horas punta”, El 
Mercurio newspaper, March 4th, 2017, 
http://impresa.elmercurio.com/Pages/NewsDetail.aspx?dt=2017-03-04&dtB=04-03-
2017%200:00:00&PaginaId=9&bodyid=3, accessed October 17th, 2017. 
 

http://impresa.elmercurio.com/Pages/NewsDetail.aspx?dt=2017-03-04&dtB=04-03-2017%200:00:00&PaginaId=9&bodyid=3
http://impresa.elmercurio.com/Pages/NewsDetail.aspx?dt=2017-03-04&dtB=04-03-2017%200:00:00&PaginaId=9&bodyid=3
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Figure 3: Purpose of trips made by Uber 

 
The questionnaire also asked for the last trip made using Uber. In Santiago, there were 
1,474 responses. Regarding trip length of the last trip made, 58% of trips are shorter than 
6 km and 84% are shorter than 10 km, as reported by users. 
 
One of the key parameters for our model is the transport mode that would have been 
used in the counterfactual scenario that Uber was unavailable. In total, close to 41% of 
users say they would have taken a traditional taxi in their last trip (Figure 4). Thus, this 
application is clearly a substitute for traditional cab services, however, the majority of 
trips seem to come from other modes. What looks more problematic in terms of VKT 
effects is that 32,5% of users said they would have taken public transportation and only 
12.1% would have taken an automobile. Walking and cycling do not seem to have a high 
substitution rate with Uber. 
 
When we analyze the substitute mode for the last trip made during weekdays and 
weekends or holidays (Figure 5) we see that 35,8% of Uber users would have used public 
transportation during a weekday trip. This is of some concern given that it was shown 
above that most Uber trips during weekdays are taken during or very close to congested 
rush hour times (7 AM to 9 AM and 6 PM to 8 PM are the rush hour times in Santiago).  
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Figure 4: Ridesourcing modal substitution 

 

 
Figure 5: Ridesourcing modal substitution by type of day 
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If we look in more detail to Uber trips taken during weekdays (891 observations) we see 
that during peak times more than 50% of Uber trips would have been taken otherwise 
using public transportation, bicycle, walking or using a shared taxi (see Table 3). This 
points to a potential impact on negative externalities such as congestion, pollution and 
accidents of the introduction of ridesourcing platforms such as Uber. Further below we 
will use this information to simulate the potential effects of ridesourcing on VKT. 
 

Table 3: Ridesourcing substitution by time of day - weekdays 
Mode Day - peak Day - off 

peak 
Night 1 
(8 PM-
12PM) 

Night 2 
(12 PM–6 

AM) 

Total 

Taxi 36% 42% 39% 38% 39% 

Car 11% 11% 12% 13% 12% 

Public transportation: bus  
42% 

17%  
35% 

12%  
35% 

19%  
27% 

24%  
36% 

17% 

Public transportation: bus-metro 17% 14% 8% 2% 11% 

Public transportation: metro 9% 9% 8% 2% 8% 

Shared taxi (colectivo) 1% 2% 1% 2% 1% 

Bicycle 4% 0% 3% 1% 2% 

Walking 3% 3% 0% 2% 2% 

I would have not traveled 1% 1% 5% 12% 3% 

Another mode 2% 5% 5% 5% 4% 

Total 100% 100% 100% 100% 100% 

Number of observations 224 323 216 128 891 

  
 
Table 4 presents the same information as Table 3 for weekend and holiday trips (574 
observations). Once again over 50% of trips come from modes different from traditional 
taxis and is consistent with the results of Rayle et al. (2016).  
 
Figure 6 disaggregate the alternative mode of travel by income level. As expected higher 
income households substitute more from taxi and private car use while lower income 
households substitute more from public transportation.  
 

Table 4: Ridesourcing substitution by time of day – weekends and public holidays 
Mode Day  Night 1 Night 2 Total 

Taxi 39% 42% 47% 44% 
Car 10% 21% 10% 13% 
Public transportation: bus 

42% 
 

20% 
29% 

 

14% 
20% 

 

17% 
28% 

 

17% 
Public transportation: bus-metro 20% 11% 2% 9% 
Public transportation: metro 2% 3% 1% 2% 
Shared taxi (colectivo) 2% 1% 3% 2% 
Bicycle 1% 1% 0% 1% 
Walking 2% 3% 2% 2% 
I would have not traveled 2% 4% 14% 8% 
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Another mode 1% 0% 4% 2% 
Total 100% 100% 100% 100% 
Number of observations 139 157 278 574 

 

 
Figure 6: Ridesourcing substitution versus personal income 

 

 
Figure 7: Ridesourcing substitution versus car ownership 
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Figure 7 shows that car ownership does not affect much the substitute mode except of 
course as concerns the alternative use of a private car.  
 
In the survey, 79 respondents (5.4% of the total) said that without Uber they would have 
not made the trip. It is worth analyzing the time of day of those trips induced by Uber. 
Results show that 90% of these trips were made at night, with a majority of them being 
made late at night (from midnight to 6 AM). Moreover, Figure 6 shows that most of these 
new trips come from lower income users. Therefore, ridesourcing apps are allowing the 
engagement on activities that otherwise would have not been undertaken (or not for the 
desired duration), especially late at night and for lower income users, which are more 
dependent on public transport that is scarce at night (the Metro service closes before 
midnight in Santiago). 
 

 
Figure 8: Induced ridesourcing trips by time period 

 
 
4. Monte Carlo simulation 
 
4.1  Input parameters 
 
Monte Carlo is a simulation technique that uses randomly generated numbers to simulate 
processes subject to uncertainty. In this work, we perform Monte Carlo simulations to 
estimate the probability that expression (10) is positive or negative, i.e., if there an 
increase or reduction in total VKT due to the addition of ridesourcing trips. A simulation 
method seems appropriate given the elements that introduce uncertainty on the value of 
the parameters of expression (10), including the substitution of other modes by 
ridesourcing, which is based on the results of the survey described in Section 3.  
 
In the absence of known probability distributions for the random parameters, we apply a 
simple approach in which random parameters are assumed to follow a uniform 
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distribution on an interval [a,b], where a and b need to be estimated from available data. 
These input parameters are summarized in Table 5 and explained next. 
 
First, regarding occupancy rates, in SECTRA (2013) the occupancy rate of vehicles was 
measured in 406 spots across Santiago. Taking the average for all observations, results 
show that public buses carry between 28 and 65 passengers, that car occupancy rate is 
between 1.4 and 1.5 passengers per vehicle, and that, when used, taxi occupancy rate is 
between 1.3 and 1.4 (without counting the driver). However, taxis had only the driver 
between 45% and 58% of the observations.  
 
The large number of times in which taxis run empty of passengers is in the order of 
estimations made in other cities. The time taxis move without passengers as a rate of the 
total driving time has been estimated as 41.6% for Berlin (Bischoff et al., 2015), 50-52% for 
New York (Cramer and Krueger, 2016) and 61-62% for Seattle (Cramer and Krueger, 2016). 
With self-collected data in Denver, Henao (2017) estimates that ridesourcing deadheading 
distance is between 34.6% and 40.8%, depending on whether the distance to travel 
from/to home at the beginning/end of the work shift is considered. The deadheading time 
rate is reported to be larger than the deadheading distance rate (Henao, 2017). Cramer 
and Krueger (2016) also report the distance rate in which taxis and Uber vehicles drive 
without passengers, the figures are 59.1% and 61.9% (taxi), 35.8% and 44.8% (Uber) for 
Los Angeles and Seattle, respectively. Therefore, the distance rate traveled without 
passengers for Uber is between 60% and 74% the distance without passengers for taxis, a 
measure of the efficiency induced by the matching between supply and demand that is 
achieved with ridesourcing applications. We will use these parameters in the simulation as 
follows:  

𝜇𝑎𝑝𝑝 = 𝐺𝑜𝜇𝑡 

𝑂𝑎𝑝𝑝 = 𝐹𝑜𝑂𝑡 

 
Parameter 𝐺𝑜 is the ratio between the percentage of empty kilometers by ridesourcing to 
the percentage of empty kilometers by taxi, we assume 𝐺0 ∈ [0.60,0.74] based on Cramer 
and Krueger (2016). Parameter 𝐹𝑜 is the ratio between the mean ridesourcing occupancy 
and the mean taxi occupancy, it should be larger than 1 because ridesourcing may make it 
easier for relatives, friends and acquaintances to travel together, we assume 𝐹0 ∈
[1.0,1.3].  
 
For the average trip length, we assume 𝐿̅ ∈ [4.0, 8.0], following the answers to the survey. 
We further include that average trip length by private car and taxi is up to 10% larger than 
average trip length by ridesourcing, assuming that all ridesourcing drivers use GPS 
navigation for optimal routing, but not all car and taxi drivers do so. As bus routes in 
general deviate from shortest paths, we assume 𝜏𝑏 ∈ [0.1,0.3].  
 
Regarding cruising for parking, there is no study of this issue in Santiago. It is assumed in 
the simulation that the average distance searching for parking is between 1% and 10% of 
the average trip length, with which we obtain an average cruising for parking distance of 
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340 meters. Bus equivalency factor goes between 1.5 bus/car (for a 8-metre long bus) and 
3 bus/car (for a 18-meter articulated bus), which is the range of bus equivalency factors 
typically used in Chile (MDS-SECTRA, 2013).  
 

Finally, with respect to the substitution rates 
𝑑𝑉𝑡

𝑑𝑉𝑎𝑝𝑝
, 

𝑑𝑉𝑝

𝑑𝑉𝑎𝑝𝑝
 and 

𝑑𝑉𝑏

𝑑𝑉𝑎𝑝𝑝
 , for the uniform 

distribution we assume a symmetrical range around the mean values found in the survey 

(40.7% for taxi, 27.1% for bus, 12.1% for car), that is 50% wide, i.e., if 
𝑑𝑉𝑖

𝑑𝑉𝑎𝑝𝑝
= 𝑐 on the 

survey, for the simulation we assume 
𝑑𝑉𝑖

𝑑𝑉𝑎𝑝𝑝
 ~𝑈(0.75𝑐, 1.25𝑐). Later, a sensitivity analysis 

is performed over this parameter. 
 

Table 5: Input parameters, base case 

Parameter Unit Min Max 

Trip length 𝐿̅  Km 4.0 8.0 

Occupancy taxi 𝑂𝑡 Pax/veh 1.3 1.4 

Occupancy car 𝑂𝑎 Pax/veh 1.4 1.5 

Occupancy bus 𝑂𝑏 Pax/veh 28 66 

Extra distance rate auto 𝜏𝑎 - 0.0 0.1 

Extra distance rate taxi 𝜏𝑡 - 0.0 0.1 

Extra distance rate bus 𝜏𝑏 - 0.1 0.3 

Increased occupancy rate ridesourcing 𝐹𝑜 - 1.0 1.3 

Extra distance rate parking 𝜃 - 0.01 0.1 

Reduced rate of empty kilometers 𝐺𝑜 - 0.60 0.74 

Rate of taxi empty kilometers 𝜇𝑡 - 0.45 0.58 

Bus equivalency factor 𝛽 bus/car 1.5 3.0 

Substitution rate car  - -0.09 -0.15 

Substitution rate taxi - -0.31 -0.51 

Substitution rate bus - -0.20 -0.34 

 
 

4.2 Base results 
 

We perform a Monte Carlo simulation of equation (10) with 20,000 replications11. 
Assuming that parameters of Equation 7 follow a uniform distribution with minimum and 
maximum values as in Table 5, we obtain that in the base case the probability that 
ridesourcing reduces VKT is zero. That is to say, in none of the 20,000 replications of 
equation (10), its value was negative. The ridesourcing effect in equation (10) is 5.24 

                                                      
11 We used the well-known sample size formula for the estimation of a mean that is normally 
distributed (see, e.g., Chapter 7 in Roess et al., 2011). First, with 10,000 replications a standard 
deviation of 0.68 km was obtained. Then, for a 95% confidence interval and a desired margin of 
error of 0.01 km/trip, we obtain a sample size of 18,570 iterations. 
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km/trip on average, whereas average taxi, car and bus effects are -2.88, -0.56, -0.10 
km/trip, respectively (see equation 10). Therefore, for each new ridesourcing trip, there is 
an average increase of 1.70 km. To put it differently, on average, an increase 1000 meters 
driven in ridesourcing is associated with an average reduction of 550 meters of taxi 
driving, 106 meters of car driving and 19 meters of bus (on car-equivalent driving). In sum, 
the average reduction of kilometers in car, taxi and bus combined only amounts to 68% of 
the average addition of VKT by ridesourcing. 
 
Although we assumed ridesourcing to be more efficient than taxis in two ways (fewer 
empty kilometers and a larger mean passenger occupancy rate per trip), the result of an 
increase in VKT is explained by the substitution of trips previously made by public 
transportation (bus and/or metro), by the addition of new trips (generated demand by 
ridesourcing) and, to a lesser extent, by the substitution of trips on other modes like 
walking and cycling.  
 
The finding of an increase of VKT due to ridesourcing is in line with the deterministic 
analysis of Henao (2017) who estimates an increase of 84.6% in VKT due to ridesourcing in 
Denver, Colorado. Other authors like Rayle et al. (2016) have not been conclusive on this 
issue, while Clewlow and Mishra (2017) conclude that ridesourcing has likely increased 
VKT in the seven cities in which they collected data. 
 
In the next section we perform an analysis of alternative scenarios, by means of 
introducing new assumptions into specific parameter values of the model. 
 
4.3 Analysis of scenarios 
 
4.3.1 Increased ridesourcing occupancy rate. 
 
A key variable to the base result of an increased total VKT is the occupancy rate of 
ridesourcing vehicles. In the simulation, average ridesourcing occupancy rate, while in 
passenger service, is 1.55 pax/veh in the base scenario. Now we run the simulation 
assuming two alternative cases in which mean occupancy rate in ridesourcing is increased 
to 2.0 and 2.4 pax/veh.  
 
When mean ridesourcing occupancy is 2.0, the probability of reducing VKT is 14.6%, and 
only when the mean occupancy rate is 2.4 pax/veh, the probability of reducing VKT is 50%. 
Figure 9 depicts both cases, in Figure 9a it is shown the histogram of the 20,000 
replications for the simulation of equation 7 (which is on the horizontal axis). 
Alternatively, Figure 9b shows the cumulative probability of the cases with 2.0 and 2.4 
pax/veh, for the range of values of total VKT effect (expression 10). In summary, we find 
that ridesourcing apps should have an occupancy rate that is between 60 and 70% larger 
than current taxi occupancy rate in order to have a 50% probability of reducing VKT, once 
randomness on the relevant parameters is included in the analytical framework.  
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(a) Histogram  

 
(b) Cumulative probability 

Figure 9: Expected result on VKT for different ridesourcing occupancy rates 
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4.3.2 Increased attraction of taxi trips and reduced attraction of public transportation 
trips 
 
Because of the way the survey was distributed, there might be an overrepresentation of 
young lower income users among respondents. Different income groups have different 
modal substitution rates as shown in Figure 7. We simulate a scenario in which average 
substitution rates are those of a higher income group, to correct for this potential bias due 
to the survey sampling method. Using the substitution rates for the second highest 
income group as the average rates for the simulation, we assume mean substitution rates 
to be 50.6% for taxi, 18.8% for bus and 10.7% for car (see Figure 7), the parameters are 
again assumed to follow a uniform distribution between 0.75 and 1.25 times the mean 
value. The result of this scenario is that the probability of reducing VKT increases from 
zero to 2.0%, i.e., it continues to be negligible without an increase of the ridesourcing 
occupancy rate. 
 
 
4.3.3 The last-mile problem 
 
In the survey there are no question on the use of Uber as a complement of mass public 
transportation like the subway (metro) system in Santiago. If a trip that used to be made 
with a feeder mode (say bus, taxi, private car) in combination with metro, is replaced by a 
trip Uber-metro, there is no bias in the analysis already performed because the effect on 
VKT is already accounted for. However, if an entire trip by private car is replaced by a 
combination Uber-metro, in this case there is a likely reduction of VKT, which is not 
correctly internalized in the previous analysis. 
 
A simple way to account for this effect is to increase the average length of the car trips 
that are being substituted. In order to do so, we assume that car trips are between 2 and 4 
times larger than the ridesourcing stage of the ridesourcing-metro that replace full car 
trips, and that 20% of total ridesourcing trips are on this situation. With this, average car 
trip length replaced by ridesourcing is between 20 and 60% larger than the average 
ridesourcing trip length, a value that is likely overestimating the impact on the last-mile 
effect on replacing full car trips. Even with this assumption, the simulation result is that 
the probability of reducing VKT with ridesourcing is zero.  
 
  
4.3.4 Scenarios 4.3.2 and 4.3.3 combined 
 
We then run a scenario with the assumptions of scenarios 4.3.2 and 4.3.3 combined. In 
this case, the probability of ridesourcing to reduce VKT is 4.5%.  
 
In summary, with our preferred set of parameters, we find that ridesourcing increases VKT 
by a large margin, and that including scenarios that account for expected extra benefits of 
ridesourcing is unlikely to change this output, unless the occupancy rate of vehicles 



 24 

increases significantly (Scenario 4.3.1). This finding corroborates similar results from the 
recent literature; for example Truong et al. (2017) estimate that autonomous vehicles (AV) 
in Victoria, Australia, will not increase VKT only if AV occupancy rates are larger than 
current car occupancy rates, in the context of the growing literature that attempt to 
estimate the effect of AV carsharing and ridesharing on VKT and energy consumption 
(e.g., Brown et al., 2014; Fagnant and Kockelman, 2014; Wadud et al., 2016; Kröger and 
Kichhöfer, 2017). This issue directs us to analyze the effect of the introduction of 
ridesharing in our framework. 

 
4.4 Ridesharing 
 
We include in the simulation framework the case of ridesharing, i.e., shared ridesourcing 
services, in which the same car is shared by multiple users who are not traveing together. 
A first issue that needs attention is finding a range of expected values for the mean 
occupancy rate of ridesharing vehicles. Alonso-Mora et al. (2017) simulated the operation 
of a fleet of shared ridesourcing vehicles in New York City; depending on fleet size and 
maximum acceptable waiting time, the optimization model shows that mean occupancy 
rate of ridesharing vehicles with capacity of 4 passengers, goes from around 1.1 pax/h 
(larger fleet, shorter waiting time) to around 3.2 pax/veh (smaller fleet, longer waiting 
time). For example, a fleet of 3,000 vehicles (around 22% of current active taxis in New 
York City) could serve 98% of the taxi demand with an excess travel time of 2.3 min 
(compared to the shortest-path travel time) and mean occupancy rates up to 2.5 
passengers per vehicle. A simulation of shared autonomous taxis in the city of Lisbon 
(OECD/ITF, 2015) shows average occupancy rates between 2.1 and 2.8 pax/veh, 
depending on time-of-day. In Santiago, current average occupancy rates of colectivos 
(shared taxis running on fixed routes) is between 2.2 and 3.512, i.e., while used, colectivos 
have an occupancy rate that is between 2.0 and 2.8 times the occupancy rates of taxis. 
Moreover, colectivos were observed without passengers between 3% and 30% of the 
times, compared to taxis that did not have passengers between 45% and 58% of 
observations. 
 
Alonso-Mora et al. (2017) only study the substitution between current taxi trips and on-
demand ridesharing services to conclude that such a move would provide large savings in 
fleet size and congestion. However, as ridesharing will also attract passengers from mass 
public transportation, this conclusion is not evident. 
 
With ridesharing, we assume that empty kilometers are between 20% and 70% of the 
empty kilometers of ridesourcing and that mean occupancy rate, while used, is between 
2.0 and 3.5 pax/veh (similar to the values of colectivos in Santiago). Based on the Lisbon 
simulation by OECD/ITF (2015), we further assume that mean travel distance by 
ridesharing is between 20% and 60% larger than the shortest path travel distance. Results 
shows that with these assumptions, probability of reducing VKT in this case is 37.5%. 

                                                      
12 Own calculation based on SECTRA (2013) 
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Therefore, having ridesharing services is a key to the impact of the new mobility 
technologies on VKT.  
 
Next, we do a sensibility analysis of the probability of reducing VKT as a function on the 
mean occupancy rate of ridesharing services, as shown in Figure 10. The result of 
ridesharing on VKT is quite sensitive on the mean occupancy rate achieved by ridesharing. 
With 2.6 passengers per vehicle in average, there is a probability of 24% of reducing VKT, 
while with 3 passengers per vehicle, that probability is 55%.  
 
 

 
Figure 10: Probability of reducing VKT by the introduction of ridesharing 

 
 
  
5. Conclusions 
 
Many authors have pointed out the importance of determining the impact of ridesourcing 
on vehicle kilometers traveled VKT (or vehicle miles traveled VMT) and thus on 
externalities such as congestion (Rayle et al., 2016; Clewlow and Mishra, 2017; Henao, 
2017). However, to date there is scant evidence on this subject. In this paper we use 
survey results on Uber use by residents of Santiago, Chile, and information from other 
studies to parameterize a model to determine whether the advent of ridesourcing 
applications such as Uber increases or decreases the number of VKT. Given uncertainty 
regarding some the parameters, we use a Monte Carlo simulation using a range of 
possible parameter values to study this issue.  
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Our base scenario indicates that ridesourcing applications have increased VKT. This occurs 
because many trips made using ridesourcing services come from mass transit or are new 
trips (induced demand).  
 
However, as the occupancy rate of ridesourcing trips increases, the possibility that 
ridesourcing decreases VKT is higher. If ridesourcing becomes truly ridesharing, there is a 
probability larger than 50% of reducing VKT if mean occupancy rate is 2.9 pax/veh or 
superior. Thus, the average occupancy rate among ridesourcing users is a key parameter 
that determines the impact on VKT.  
 
It is probable that our results are conservative in terms of the positive impact of 
ridesourcing on VKT. Our model assumes that as users switch from transit or taxis to 
ridesourcing services, the supply of buses and taxis is adjusted to the new demand 
conditions. If this is not the case, then it is even more likely that ridesourcing applications 
increase VKT and thus congestion, at least until there is a supply adjustment of the other 
modes. However, in this case, as least for buses, there will be a negative impact on users 
that depend on mass transit (for example, if they cannot afford the ridesourcing fare) 
since frequency or route coverage will decrease13. This raises issues not only on the 
efficiency effects of ridesourcing, but also on the equity impacts of these new mobility 
technologies.  
 
Our findings point to the need to study the potential and take-up of ridesharing 
applications (such as Uber Pool). In Chile some non-profit ridesharing applications are 
already in use (“All Ride” for example). However, to date they have had limited use among 
the population. We conjecture that the prior existence of a shared taxi industry, privacy 
and security considerations of traveling with unknown passengers, plus the absence of 
high-occupancy vehicle lanes in Chile (that may provide incentives for such applications 
elsewhere), may limit the adoption and popularity of ridesharing applications.  Further 
research needs to be undertaken on this issue given that, according to our results, it is 
crucial to increase average occupancy rates of ridesourcing applications if these are to 
have beneficial externality effects. 
 
Our results may seem at odds with those of Li et al. (2016), who find a negative 
correlation between congestion and the appearance of Uber in US metropolitan areas. 
However, they conjecture that ridesourcing applications such as Uber have the potential 
to reduce car ownership, increase car occupancy rates due to ridesharing and delay trips 
during peak hours (due to surge pricing). Further research should try to reveal whether 
different parameter values, particularly for ridesharing occupancy rates, might explain 
their results as compared to ours. 
 

                                                      
13 The effect of service frequency on reducing passenger waiting time and therefore encouraging 
public transportation use is known as the ‘Mohring effect’ (Mohring, 1972). 
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There are other areas for further research.  Large differences in door-to-door travel time 
between ridesourcing and traveling by private cars do exist (Henao and Marshall, 2017), 
with parking time as a key factor on this outcome. The implications of ridesourcing on the 
need for parking infrastructure and parking fees are still to be explored; seminal results on 
the effect of shared AVs on parking demand are promising (Zhang et al., 2015). The effect 
of ridesourcing applications on long-run vehicle ownership decisions and their impact on 
externalities is another relevant open question.  
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