
 
 

LIQUIDITY CONTRACTIONS AND 
PREPAYMENT RISK ON COLLATERALIZED 
ASSET MARKETS 
                   Autores: Miguel A. Iraola y Juan Pablo Torres-Martínez 

Santiago, Septiembre de 2012 

 

SDT 364 
 



LIQUIDITY CONTRACTIONS AND PREPAYMENT RISK ON

COLLATERALIZED ASSET MARKETS

MIGUEL A. IRAOLA AND JUAN PABLO TORRES-MARTÍNEZ

Abstract. This paper presents a dynamic general equilibrium model with default and collateral

requirements. In contrast with previous literature, our model allows for liquidity contractions and

general prepayment specifications. We show that liquidity substantially affects credit and prepay-

ment risks, and that different borrowers may follow differentiated payment strategies: whereas

some pay, others prepay or default. The lack of liquidity increases debtors’ willingness to continue

paying, even thought prepayment cost could be higher than the collateral value. This mechanism

rationalizes underwater mortgages. We prove existence of equilibrium, and provide a numerical

example illustrating the main determinants of optimal payment strategies.
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1. Introduction

The recent financial crisis of 2007-2009 has clearly revealed the central role played by financial

markets liquidity and its interaction with credit and prepayment risks (cf., Geanakoplos et al.

(2012)). These should be essential ingredients of modern macroeconomic theories. However, there

is a lack of general equilibrium models identifying the major determinants of financial risks. This

paper is an attempt to close this gap. We propose a dynamic general equilibrium model with default,

collateral requirements, and liquidity contractions.

We extend Geanakoplos and Zame (1997, 2002, 2007) two-period general equilibrium model with

default and collateral requirements to a three-period setting with long-lived securities. In this

direction, Araujo, Páscoa and Torres-Mart́ınez (2011) show equilibrium existence in an infinite-

horizon economy with long-lived securities and sequential trading without imposing exogenous debt

limits or transversality conditions (cf., Magill and Quinzii (1994, 1996), Hernandez and Santos

(1996), Levine and Zame (1996), Araujo Páscoa and Torres-Mart́ınez (2002), Kubler and Schmedders

(2003)). A major divergence of our model with respect to previous literature is the incorporation

of liquidity contractions modeled as a shrinkage of the set of available securities. Indeed, Araujo,
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Páscoa and Torres-Mart́ınez (2011) require the set of securities to be constant over time.1 This

modification drastically changes optimal agents’ behavior.

We consider an economy with a variable set of credit contracts collateralized by durable goods

which are seized in case of default.2 Each credit contract is characterized by its emission node,

coupon payment, prepayment rule, and collateral requirements. After the emission of a credit line,

borrowers have the possibility to pay the coupon or close short positions by either delivering the

collateral or prepaying. If the set of credit lines were constant, debtors would deliver the minimum

between the market value of debt (i.e., prepayment cost) and the constituted collateral. However,

liquidity contractions allow for differentiated optimal payment schemes across agents.

We assume that credits are financed by securitization of debts. Thus, each debt contract variety

is securitized into a pass-through security delivering aggregate debtors payments. This financial

structure allows to consider diverse Mortgage Backed Securities (MBS). As it is well known, the

implicit yield-to-maturity of a MBS could be affected by credit and prepayment risks (cf., Becketti

(1989)). Although some forward-looking specifications of prepayment rules are able to eliminate pre-

payment risks —for instance, rules defined as a high enough present value of future commitments—,

our model is compatible with a great variety of prepayment specifications. For example, backward-

looking prepayment rules, defined as the unpaid portion of a debt, are compatible with our approach.

The fourth quarter of 2011, over 22% of all residential properties with a mortgage (around 11.1

million) were underwater.3 A mortgage is considered underwater if the borrower continues paying

the coupons, even though the remaining value of the loan (prepayment cost) is higher than the un-

derlying collateral. In a model without credit tightening, as in Araujo, Páscoa and Torres-Mart́ınez

(2011), underwater mortgages are not possible in equilibrium because borrowers optimally decide

to default. However, in our model the lack of liquidity makes debtors more willing to pay coupons

which could rationalize underwater mortgages. This result is in the spirit of the additional enforce-

ment literature. However, we do not face the same problems in showing existence of equilibrium (see

Ferreira and Torres-Mart́ınez (2010)). In our model, collateral guarantees and commodity markets

1Although the extension of our model to an infinite horizon does not entail substantial technical difficulties, this

three-period version of the model allows a neater presentation of our main results.
2Different additional enforcement mechanisms have been considered in the literature of general equilibrium with

credit risk. The effect of utility penalties on payment behavior has been analyzed by Dubey, Geanakoplos and

Shubik (1989, 2005), and Zame (1993); participation constraints have been considered by Kehoe and Levine (1993),

Kocherlakota (1996), and Alvarez and Jermann (2000); bankruptcy mechanisms have been considered by Araujo and

Páscoa (2002), Sabarwal (2003), and Poblete-Cazenave and Torres-Mart́ınez (2012).
3According to CoreLogic data: http://www.corelogic.com/about-us/news/corelogic-reports-negative-equity-

increase-in-q4-2011.aspx
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clearing conditions induce endogenous upper bounds on debt positions. Thus, existence of equi-

librium is proved without imposing additional debt constraints (cf., Hart (1975), Geanakoplos and

Zame (1997, 2002, 2007), and Araujo Páscoa and Torres-Mart́ınez (2002, 2011)).

We provide a numerical example illustrating all possible payment strategies in our model: pay-

ment, prepayment, and default. We show that different agents may adopt differentiated optimal

payment decisions and discuss the effect of financial markets liquidity on these decisions. In partic-

ular, it is shown that underwater mortgages are a possible equilibrium outcome as a consequence of

liquidity contractions. Moreover, the analysis of optimal payment decisions reveals that, indepen-

dently of the existence of alternative credit opportunities, if the cost associated with closing a debt

position is lower than the present value of commitments, then agents close this position by prepaying

or defaulting. Additionally, agents whose optimal decisions are not affected by collateral constraints

maintain short positions if the closing cost is higher than the present value of future commitments.

However, these results are substantially modified in the presence of more favorable credit contracts.

In fact, the existence of alternative credit opportunities may trigger agents’ decision to close debts

although the cost of this action could be higher than the present value of commitments.

The rest of the paper proceeds as follows: Section 2 sets out the model, notation and equilibrium

definition. Section 3 provides a numerical example, Section 4 establishes existence of equilibrium,

Section 5 characterizes optimal payment strategies, and finally we provide some concluding remarks.

2. Model

Information structure. We consider a dynamic economy E with three periods. There is uncertainty

about the state of nature that will be realized, which belongs to a finite set S. The common and

symmetric information available at period t ∈ {0, 1, 2} is given by a partition of S, denoted by Ft.

We assume that there is no information at t = 0, i.e., F0 = {S}. Available information increases

through time and economic agents are perfectly informed in the last period. That is, (i) Ft+1 is as

fine as Ft, where t ∈ {0, 1}; and (ii) F2 = {{s} : s ∈ S}.

A node is a pair (t, σ), where t ∈ {0, 1, 2} and σ ∈ Ft. Let D be the set of nodes in the economy

—or event-tree— and ξ0 be the unique initial node. We denote by t(ξ) the date associated with a

node ξ, and by Dt the set of nodes dated t. We refer to µ = (t(µ), σµ) as a successor of ξ = (t(ξ), σξ),

denoted by µ > ξ, when both t(µ) > t(ξ) and σµ ⊆ σξ. Let ξ+ be the set of immediate successor

nodes of ξ ∈ D.

Physical markets. At each node in D there is a finite and ordered set of commodities, L, which

are traded in spot markets and may suffer transformations through time. A bundle of commodities

v ∈ RL+ consumed at ξ ∈ D is transformed into a bundle Yµv at each node µ ∈ ξ+, where Yµ is a
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(L× L)-matrix with non-negative entries. Let pξ = (pξ,l ; l ∈ L) ∈ RL+ be the vector of spot prices

at ξ ∈ D and p = (pξ ; ξ ∈ D) be the process of commodity prices.

Financial instruments. At each ξ ∈ D \ D2 a finite and ordered set J(ξ) of collateralized credit

contracts can be issued. Promises associated with j ∈ J(ξ) are pooled into a pass-through security

identified with the same subindex j (i.e., security j distributes payments made by borrowers of

credit contract j). We denote by qξ = (qξ,j ; j ∈ J(ξ)) ∈ RJ(ξ)
+ the vector of unitary prices of credit

contracts issued at ξ ∈ D \D2, and by q = (qξ ; ξ ∈ D \D2) the process of unitary prices. Without

loss of generality, at each ξ ∈ D \D2, we identify the unitary price of a security j ∈ J(ξ) with the

unitary price of the associated credit contract.

Securities issued in the first period can be renegotiated. Hence, let πµ = (πµ,j ; j ∈ J(ξ0)) ∈ RJ(ξ0)
+

be the unitary resale price of securities at µ ∈ D1, and denote by π = (πµ ; µ ∈ D1) the process

of pass-through resell prices. Let P := RD×L+ ×
∏
ξ∈D\D2

RJ(ξ)
+ ×RD1×J(ξ0)

+ be the space of unitary

commodity and financial prices (p, q, π).

Financial trading rules. The seller of one unit of credit contract j ∈ J(ξ) receives at ξ an amount

of resources qξ,j , is burdened to constitute a collateral bundle of commodities Cξ,j ∈ RL+ \ {0}, and

promises to pay a coupon Aµ,j(p, q, π) at each node µ > ξ, with Aµ,j : P → R+. It is assumed that

borrowers hold and consume collateral guarantees.

At terminal nodes, since the only enforcement in case of default is the seizure of collateral,

borrowers follow strategic default. That is, borrowers of one unit of a credit contract j ∈ J(ξ0)

pay at µ ∈ D2 the minimum between the original promise Aµ,j(p, q, π) and the market value of the

collateral guarantee pµCµ,j , where Cµ,j := YµYµ−Cξ0,j and µ− is the immediate predecessor node

of µ. Analogously, given ξ ∈ D1, borrowers of one unit of j ∈ J(ξ) pay at each node µ ∈ ξ+ the

minimum between Aµ,j(p, q, π) and pµCµ,j , where Cµ,j := YµCξ,j . Thus, at terminal nodes, lenders

can perfectly foresight borrowers’ payments. To shorten notation, given µ ∈ D2, let Rµ,j(p, q, π) :=

min{Aµ,j(p, q, π), pµCµ,j} be the unitary payment of security j ∈ J(µ−) ∪ J(ξ0) at node µ.

At intermediate nodes, heterogeneous payments across agents could be observed as a consequence

of liquidity shrinkages. That is, at each ξ ∈ D1, different borrowers of a credit contract j ∈ J(ξ0)

may adopt different decisions: some of them pay, while others prepay or default on their promises.

It is assumed that each credit line incorporates a prepayment rule. This rule specifies payments in

order to reduce the amount of debt before terminal nodes. More precisely, borrowers of j ∈ J(ξ0)

can reduce at ξ ∈ D1 their short-positions in one unit by paying an amount of resources Bξ,j(p, q, π).

The prepayment rule Bξ,j : P → R+ satisfies Bξ,j(p, q, π) ≥ Aξ,j(p, q, π), ∀(p, q, π) ∈ P. We discuss

the generality of our approach to prepayment rules at the end of this section.
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Given ξ ∈ D \D2, buyers of one unit of pass-through security j ∈ J(ξ) pay qξ,j , which entitles

them to obtain a payment Nµ,j at each µ > ξ. Unitary payments are endogenously determined

and are such that, node by node, resources distributed to lenders of security j match borrowers’

deliveries. Let D+ = {(µ, j) : ∃ξ ∈ D, (µ > ξ) ∧ (j ∈ J(ξ))} be the set of pairs (µ, j) such that µ is

a node where security j could yield payments.

Households. There is a finite set of agents, denoted by H. Each agent h ∈ H is characterized by a

utility function Uh : RD×L+ → R and a commodity endowment process wh = (whξ ; ξ ∈ D) ∈ RD×L+ .

At ξ ∈ D, each agent h ∈ H chooses autonomous consumption bundles xhξ ∈ RL+, i.e., a consumption

in excess of the required collateral. Also, each agent h selects at ξ ∈ D \ D2 a debt portfolio

ϕhξ = (ϕhξ,j ; j ∈ J(ξ)) ∈ RJ(ξ)
+ . For each intermediate node ξ ∈ D1, ϕα,hξ,j ∈ [0, ϕhξ0,j ] denotes the

position on debt contract j ∈ J(ξ0) that h honors and maintains open. Analogously, ϕβ,hξ,j ∈ [0, ϕhξ0,j ]

is the part of agent h debt that is prepaid at ξ ∈ D1. Thus, agent h defaults on (ϕhξ0,j−ϕ
α,h
ξ,j −ϕ

β,h
ξ,j )

units of contract j ∈ J(ξ0) at ξ ∈ D1.

Since borrowers consume collateral bundles, the total consumption at a node ξ ∈ D is given by

cξ(x
h, ϕh, ϕα,h) :=


xhξ +

∑
j∈J(ξ)

Cξ,jϕ
h
ξ,j , when ξ = ξ0;

xhξ +
∑

j∈J(ξ)

Cξ,jϕ
h
ξ,j +

∑
j∈J(ξ0)

Cξ,jϕ
α,h
ξ,j , when ξ ∈ D1;

xhξ , when ξ ∈ D2.

The vector θhξ := (θhξ,j ; j ∈ J(ξ0) ∪ J(ξ)) ∈ RJ(ξ0)∪J(ξ)
+ denotes the portfolio of passthrough

securities of agent h ∈ H at node ξ ∈ D \D2.

Given prices (p, q, π) ∈ P and unitary security payments N := (Nξ,j ; (ξ, j) ∈ D+) ∈ N := RD+

+ ,

the objective of each household h ∈ H is to maximize utility by choosing a plan

(xh, θh, ϕh, ϕα,h, ϕβ,h) ∈ X := RD×L+ ×
∏

ξ∈D\D2

RJ(ξ0)∪J(ξ)
+ ×

∏
ξ∈D\D2

RJ(ξ)
+ × RD1×J(ξ0)

+ × RD1×J(ξ0)
+ ,

which satisfies the following constraints:

(Bξ0) pξ0cξ0(xh, ϕh, ϕα,h)+
∑

j∈J(ξ0)

qξ0,jθ
h
ξ0,j ≤ pξ0w

h
ξ0 +

∑
j∈J(ξ0)

qξ0,jϕ
h
ξ0,j ;

for all ξ ∈ D1,

(Bξ) pξcξ(x
h, ϕh, ϕα,h)+

∑
j∈J(ξ)

qξ,jθ
h
ξ,j +

∑
j∈J(ξ0)

πξ,jθ
h
ξ,j

≤ pξ
(
whξ + Yξcξ0(xh, ϕh, ϕα,h)

)
+
∑
j∈J(ξ)

qξ,jϕ
h
ξ,j +

∑
j∈J(ξ0)

(πξ,j +Nξ,j) θ
h
ξ0,j

−
∑

j∈J(ξ0)

(
Aξ,j(p, q, π)ϕα,hξ,j +Bξ,j(p, q, π)ϕβ,hξ,j + pξCξ,j

(
ϕhξ0,j − ϕ

α,h
ξ,j − ϕ

β,h
ξ,j

))
;

(Sξ) ϕα,hξ,j +ϕβ,hξ,j ≤ ϕ
h
ξ0,j , ∀j ∈ J(ξ0);
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and, for all ξ ∈ D2,

(Bξ) pξx
h
ξ ≤ pξ

(
whξ + Yξcξ−(xh, ϕh, ϕα,h)

)
+

∑
j∈J(ξ0)∪J(ξ−)

Nξ,jθ
h
ξ−,j

−

 ∑
j∈J(ξ−)

Rξ,j(p, q, π)ϕhξ−,j +
∑

j∈J(ξ0)

Rξ,j(p, q, π)ϕα,hξ−,j

 .

Given (p, q, π,N) ∈ P×N , the choice set of h ∈ H —denoted by Γh(p, q, π,N)— is the collection

of plans in X that satisfy budget constraints (Bξ)ξ∈D and portfolio restrictions (Sξ)ξ∈D1
.

Definition. An equilibrium for E is given by prices and unitary payments (p, q, π,N) ∈ P × N

jointly with allocations (xh, θ
h
, ϕh, ϕα,h, ϕβ,h)h∈H ∈ XH such that,

(i) For each h ∈ H, (xh, θ
h
, ϕh, ϕα,h, ϕβ,h) ∈ argmax {Uh(z), z ∈ Γh(p, q, π,N)}.

(ii) Asset markets are cleared,∑
h∈H

(
θ
h

ξ,j − ϕhξ,j
)

= 0, ∀ξ ∈ D \D2, ∀j ∈ J(ξ).

∑
h∈H

(
θ
h

µ,j − θ
h

ξ0,j

)
= 0, ∀µ ∈ D1, ∀j ∈ J(ξ0).

(iii) Physical markets are cleared,∑
h∈H

cξ0(xh, ϕh, ϕα,h) =
∑
h∈H

whξ0 ,∑
h∈H

cξ(x
h, ϕh, ϕα,h) =

∑
h∈H

(
whξ + Yξcξ−(xh, ϕh, ϕα,h)

)
, ∀ξ > ξ0.

(iv) Security payments are compatible with deliveries,

Nξ,j

∑
h∈H

θ
h

ξ0,j =
∑
h∈H

(
Aξ,j(p, q, π)ϕα,hξ,j +Bξ,j(p, q, π)ϕβ,hξ,j + pξCξ,jϕ

γ,h
ξ,j

)
, ∀ξ ∈ D1, ∀j ∈ J(ξ0);

Nµ,j

∑
h∈H

θ
h

ξ0,j = Rµ,j(p, q, π)
∑
h∈H

ϕh,αµ−,j , ∀µ ∈ D2, ∀j ∈ J(ξ0);

Nµ,j = Rµ,j(p, q, π), ∀µ ∈ D2, ∀j ∈ J(µ−);

where, for each (h, ξ, j) ∈ H ×D1 × J(ξ0), ϕγ,hξ,j := ϕhξ0,j − ϕ
α,h
ξ,j − ϕ

β,h
ξ,j denotes default by agent h

on debt contract j at node ξ.

Notice that, equilibrium existence could easily be proved if security prices and payments were

zero at each node. Indeed, any pure spot commodity market equilibrium is an equilibrium for our

financial economy. However, when credit lines involve non-zero promises and collateral do not fully

depreciate through time, it is natural to expect positive deliveries for traded contracts (cf., Steinert

and Torres-Mart́ınez (2007)). Hence, in Section 4 below we prove the existence of a non-trivial
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equilibrium, i.e., an equilibrium such that, for some ξ ∈ D \ D2, there exists j ∈ J(ξ) such that

(Nµ,j)µ>ξ 6= 0.

Security payments as the mean value of borrowers’ deliveries.

Given an equilibrium
(

(p, q, π,N); (xh, θ
h
, ϕh, ϕα,h, ϕβ,h)h∈H

)
∈ P×N×XH , assume that credit

contract j ∈ J(ξ0) is traded. Since at each ξ ∈ D1, payment, prepayment and default rates are

given by

τpξ,j :=

∑
h∈H

ϕα,hξ,j∑
h∈H

ϕhξ0,j
; τppξ,j :=

∑
h∈H

ϕβ,hξ,j∑
h∈H

ϕhξ0,j
; τdξ,j :=

∑
h∈H

(
ϕhξ0,j − ϕ

α,h
ξ,j − ϕ

β,h
ξ,j

)
∑
h∈H

ϕhξ0,j
,

unitary security payments can be rewritten as a weighted mean of borrowers’ deliveries. That is,

Nξ,j = τpξ,jAξ,j(p, q, π) + τppξ,j Bξ,j(p, q, π) + τdξ,j pξCξ,j . Additionally, at each terminal node µ ∈ ξ+,

we have Nµ,j = (1−τppξ,j−τdξ,j)Rµ,j(p, q, π), implying that three forces could make security payments

lower than coupon values: previous and current rates of default, jointly with prepayment risk.

Positive margins between collateral and credit values.

Let
(

(p, q, π,N), (xh, θ
h
, ϕh, ϕα,h, ϕβ,h)h∈H

)
∈ P ×N × XH be a non-trivial equilibrium. As in

Geanakoplos and Zame (1997, 2002, 2007), under strict monotonicity of preferences, the following

non-arbitrage condition holds: for each ξ ∈ D \D2 and each debt contract j ∈ J(ξ), the collateral

value is greater than the amount of credit, i.e., pξCξ,j − qξ,j > 0. Indeed, if this condition is not

satisfied, agents could take advantage of an unlimited arbitrage opportunity. They may increase

their utility by increasing the short position on contract j issued at ξ, buying the associated collateral

bundle with the borrowed resources, and defaulting at successor nodes µ ∈ ξ+. The existence of

this arbitrage opportunity contradicts the optimality of individual plans.

Examples of debt contracts and prepayment rules.

Our model is compatible with a great variety of coupon and prepayment specifications. Indeed,

to ensure the existence of non-trivial equilibria we only need the continuity of these functions (see

Section 4). Thus, given prices (p, q, π) ∈ P such that p � 0, our framework includes the following

characterizations of a debt contract j ∈ J(ξ0):

(a) Promises and prepayments in real terms. For each µ > ξ0, define Aµ,j(p, q, π) := pµaµ,j such that

aµ,j ∈ RL+. Then, the coupon value coincides with the market value of a given commodity bundle.

Analogously, for each µ ∈ D1, prepayment rules can be specified in real terms as Bµ,j(p, q, π) =

pµbµ,j , where bµ,j ≥ aµ,j .

(b) Fixed interest rates and backward-looking prepayment. Suppose that,

Aµ,j(p, q, π) =
qξ0,j

(d+ d2)

pµa

pξ0a
, ∀µ > ξ0,



8 M. A. Iraola and J. P. Torres-Mart́ınez

where d = 1
(1+i) , i > 0, and the bundle a ∈ RL++ is used to compute a price index, i.e.,

pµa
pξa

intended

to measure the purchase power variation between ξ ∈ D and µ ∈ ξ+. In this case, borrowers who

honor their commitments pay a real interest i per period. At each ξ ∈ D1, the prepayment rule is

defined as

Bξ,j(p, q, π) := (1 + i)qξ0,j
pµa

pξ0a
,

which satisfies the condition Bξ,j(p, q, π) > Aξ,j(p, q, π). Essentially, (Bξ,j ; ξ ∈ D1) is a backward-

looking prepayment rule and, therefore, after the payment of the coupon at ξ ∈ D1, the cost of

prepaying a debt Bξ,j(p, q, π) − Aξ,j(p, q, π) is equal to the unpaid portion of the loan’s face value

(1+i)
(2+i)qξ0,j adjusted by the price index.4

Finally, a simple modification of this example allows to consider nominal debt contracts,

(Aµ,j , Bξ,j)(p, q, π) =

(
qξ0,j

(d+ d2)
,
qξ0,j
d

)
, ∀µ > ξ0, ∀ξ ∈ D1.

(c) Forward-looking prepayment rules. Some financial instruments avoid prepayment risk specifying

a forward-looking prepayment cost. Thus, borrowers who want to close debts before terminal nodes

are required to deliver the present value of promises. That is, strictly positive discount factors

(ρ(µ);µ ∈ D2) are specified such that, the prepayment cost Bξ,j(p, q, π) at node ξ ∈ D1 is given

by either Aξ,j(p, q, π) +
∑
µ∈ξ+

ρ(µ)Aµ,j(p, q, π) or Aξ,j(p, q, π) +
∑
µ∈ξ+

ρ(µ)Rµ,j(p, q, π). In the former

case, the prepayment rule does not take into account that borrowers may default at terminal nodes

and, therefore, induces relatively more costly prepayment values compared with the latter.

Discount factors could be exogenously determined to ensure a lower bound for investment returns,

even when all borrowers prepay. Alternatively, future payments could be discounted considering

idiosyncratic characteristics of potential borrowers, with the aim of limiting prepayment risk. To

this end, it is sufficient to ensure that agents are more impatient than the implicit inter-temporal

discount induced by the financial contract (see Section 5 for a description of borrowers’ behavior in

terms of their idiosyncratic discount factors).

4Functions (Aµ,j)µ>ξ0 and (Bξ,j)ξ∈D1
are not well defined for pξ0 = 0. However, by means of a lower bound for

first period commodity prices, and after mild modifications, we make the specifications of coupon and prepayment

rules above compatible with our equilibrium existence result (see Section 4).

Equilibrium prices can be normalized to satisfy ‖pξ0‖Σ +‖qξ0‖Σ = 1 and, under strict monotonicity of preferences,

the following non-arbitrage conditions hold: pξ0Cξ0,k > qξ0,k, ∀k ∈ J(ξ0). Therefore, adding the latter non-arbitrage

inequality across assets we get ‖pξ0‖Σ > Υξ0 :=

(
1 +

(
max
l∈L

∑
j∈J(ξ0)

Cξ0,j,l

))−1

.

Hence, in equilibrium, the following continuous functions coincide with (Aµ,j)µ>ξ0 and (Bξ,j)ξ∈D1
,(

Âµ,j , B̂ξ,j

)
(p, q, π) := qξ0,j

(
1

(d+ d2)
Θ(µ),

1

d
Θ(ξ)

)
, ∀µ > ξ0, ∀ξ ∈ D1,

where for each ν ∈ D, Θ(ν) := min

{
pνa
pξ0a

, pνa
(min
l∈L

al) Υξ0

}
.
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3. Heterogeneous Behavior under Liquidity Constraints

In our model, different borrowers of identical credit contracts may exhibit heterogenous optimal

payment strategies. The objective of this section is to illustrate this possibility. Thus, by means

of an example, we show that in equilibrium we can observe: (i) prepayment of debt in presence

of cheaper credit options; (ii) prepayment without alternative access to credit; (iii) payment of

promises as a consequence of the absence of liquidity; (iv) default on the original promises.

Before presenting our numerical example, assuming strict monotonicity of preferences, we would

like to highlight some simple situations where debtor’s optimal payment strategy is uniform across

agents.

Terminal nodes. All borrowers of a credit contract choose the same optimal decisions in the final

period. They honor their commitments only if promises are lower than the collateral value.

Low collateral value at intermediate nodes. Given a node ξ ∈ D1 and a security j ∈ J(ξ0), suppose

that the collateral value is lower than the coupon value, pξCξ,j < Aξ,j(p, q, π). Then, the optimal

strategy is to default because the collateral bundle could be consumed at a lower cost by defaulting

and buying back the collateral bundle.

Notice that, given prices (p, q, π) ∈ P, prepayment and default on a contract j ∈ J(ξ0) coexist

at a node ξ ∈ D1 only when these strategies cost the same, Bξ,j(p, q, π) = pξCξ,j . Indeed, both

decisions finalize the contractual commitment and, thus, borrowers who want to close the contract

before terminal nodes will always choose the cheapest strategy. Moreover, if Bξ,j(p, q, π) 6= pξCξ,j ,

some agents could pay while others close the position at ξ only when

Aξ,j(p, q, π) < Bξ,j(p, q, π) < pξCξ,j or Aξ,j(p, q, π) < pξCξ,j < Bξ,j(p, q, π).

In the first case, some borrowers of j may pay the coupon while others prepay. In the second case,

an underwater mortgage, some borrowers may default while others honor the promise maintaining

the short position. We illustrate these possibilities in the following example.

Example. Assume that there is uncertainty only between t = 0 and t = 1. In t = 1 there are three

states of nature {u,m, d}. Thus, let D = {0, u,m, d, u+,m+, d+} be the event-tree. There is only

one commodity in the economy, which appreciates 50% between periods t = 0 and t = 1 if nodes

{u,m} are reached, depreciates a 13/22 when node d occurs, and it is perfectly durable between

periods t = 1 and t = 2. At each node, the commodity price is normalized to one.

Credit contracts are issued at nodes {0,m} and are securitized into pass-through securities. One

unit of credit contract j0 issued at ξ = 0 delivers q0,j0 to the borrower, which is burdened to

constitute a collateral of C0,j0 = 11/4 and has the commitment to pay coupons Aξ,j0 = 1 at nodes
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ξ 6= {0,m+} and Aξ,j0 = 2 at node ξ = m+. The constituted collateral must be maintained through

the duration of the contract. Borrowers may prepay their debt at nodes ξ ∈ {u,m, d} delivering an

amount of commodity Bξ,j0 , where (Bu,j0 , Bm,j0 , Bd,j0) = (5/4, 3/2, 5/4). On the other hand, one

unit of debt contract jm issued at node ξ = m delivers qm,jm to borrowers, who must constitute a

collateral Cm,jm = 33/8 and commit to pay a coupon Aξ,jm = 1 at node ξ = m+.

Agents can invest on securities associated with the pooling of credit contracts. The security

associated with credit contract j0 is negotiated at all nodes in periods t ∈ {0, 1} and distributes

payments made by borrowers. Unitary payments of security j0 at node ξ > 0 is denoted by Nξ,j0 .

The security associated with credit contract jm is negotiated only at node m and delivers Nm+,jm

at node ξ = m+.

Agents h ∈ {A,B,C} are characterized by the following utility functions and endowments,

UA(x0, xu, xm, xd, xu+ , xm+ , xd+) = x0 +
3

24
xu +

3

24
xm +

12

24
xd +

12

96
xu+ +

12

96
xm+ +

48

96
xd+ ;

(wA0 , w
A
u , w

A
m, w

A
d , w

A
u+ , wAm+ , wAd+) = (3/2, 0, 0, 0, 0, 0, 0);

UB(x0, xu, xm, xd, xu+ , xm+ , xd+) = x0 +
2

24
xu +

2

24
xm +

8

24
xd +

1

96
xu+ +

1

96
xm+ +

4

96
xd+ ;

(wB0 , w
B
u , w

B
m, w

B
d , w

B
u+ , wBm+ , wBd+) = (2, 1, 1, 1, 0, 0, 1);

UC(x0, xu, xm, xd, xu+ , xm+ , xd+) = x0 +
1

24
xu +

1

24
xm +

4

24
xd +

4

96
xu+ +

4

96
xm+ +

16

96
xd+ ;

(wC0 , w
C
u , w

C
m, w

C
d , w

C
u+ , wCm+ , wCd+) = (2, 1, 1, 1, 0, 0, 1).

Agents choose allocations of consumption and financial positions to maximize utility subject to

budget constraints and portfolio restrictions defined in the previous section. After normalizing

commodity prices to one at each node, an equilibrium for this economy is given by prices and

payments

[(q0,j0 , qm,jm); (πu,j0 , πm,j0 , πd,j0)] = [(3/4, 1/2); (1/4, 0, 1/4)] ;[
(Nu,j0 , Nm,j0 , Nd,j0 , Nu+,j0 , Nm+,j0 , Nd+,j0);Nm+,jm

]
= [(9/8, 3/2, 17/16, 1/2, 0, 1/2); 1] .

jointly with consumption allocations

(xA0 , x
A
u , x

A
m, x

A
d , x

A
u+ , xAm+ , xAd+) = (0, 9/4, 10/4, 17/8, 13/4, 7/2, 25/8);

(xB0 , x
B
u , x

B
m, x

B
d , x

B
u+ , xBm+ , xBd+) = (11/4, 33/8, 33/8, 9/8, 25/8, 25/8, 9/8);

(xC0 , x
C
u , x

C
m, x

C
d , x

C
u+ , xCm+ , xCd+) = (11/4, 31/8, 29/8, 1, 31/8, 29/8, 2);

and financial positions described in the figure below.5

5The individual optimality of these allocations has been verified through a simplex algorithm.
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A: Mantains the investment. 
B: Pays the coupon. 
C: Prepays debt. 

A: Liquidates previous investment and buys 
one unit of the new security. 
B: Prepays debt and sells one unit of mj . 
C: Prepays debt. 

A: Mantains the investment. 
B: Pays the coupon. 
C: Defaults. 

u 

+u
 

+m  

+d
 

m 

d 

A: Invests in two units of the security. 
B: Sells one unit of 0j . 
C: Sells one unit of 0j . 

As utility functions are linear in consumption, marginal rates of substitution between two im-

mediate successor nodes are measures of individual impatience. In this sense, agent A is relatively

patient. Moreover, as agent A′s endowment is concentrated at t = 0, A decides to invest in the first

period. Agent B, who is more impatient than A between t = 0 and t = 1, and the most impatient

consumer between periods t = 1 and t = 2, prefers to borrow at t = 0. Agent C, who is as patient

as A between the last two periods, is the most impatient agent between periods t = 0 and t = 1

and, therefore, borrows resources at t = 0 to anticipate consumption.

However, between periods t = 1 and t = 2, B is more impatient than C. Therefore, at node

u, where both borrowers could prepay their debts, B decides to pay the coupon and C prepays.

Hence, even though agents have enough resources to prepay their debts, this decision depends on

preferences and endowments. Furthermore, if there are more convenient borrowing options, the

most impatient agents may prepay their debts and make use of these alternative credit instruments.

For instance, at node m, agent B prepays and issues the new credit contract.

We would like to highlight that agents do not necessarily default on their debt when the collat-

eral value is lower than the prepayment value (underwater mortgage). This decision depends on

financial markets’ liquidity and debtors’ wealth. For instance, since agent B is impatient, prefers to

pay coupons at d and d+ rather than to close the contract by delivering the collateral guarantee at

d. �

It could seem that the results of the example above crucially depend on the absence of rental

markets for the consumption good. However, this is not the case. For instance, assume the existence
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of a rental contract at node d, which specifies a rental price 65/73, and assume that rented goods’

depreciation is 58/73 (we allow higher depreciation of the durable good when it is not consumed by

its owner). In this case, our original result is not altered. First, from the lender’s point of view, the

rate of return on renting the consumption good
(

15/73
1−65/73 = 15/8

)
is lower than the rate of return

provided by the existing security
(

1/2
1/4 = 2

)
. Second, from the borrower’s point of view, the renting

price is too high. Therefore, it is preferable to maintain the original financial positions.

4. Equilibrium Existence

Although our model allows for incomplete financial markets and real assets, it is possible to show

the existence of a non-trivial equilibrium. As in the seminal model of Geanakoplos and Zame (1997,

2002, 2007), commodity markets feasibility induce endogenous upper bounds on debt positions.

Therefore, market feasible financial positions are bounded and the economy can be compactified to

find an equilibrium allocation as a Cournot-Nash equilibrium of a generalized game.

Theorem. An economy E that satisfies the following assumptions has a non-trivial equilibrium.

(A1) For each h ∈ H, Uh is continuous, strictly increasing, and strictly quasi-concave.

(A2) For each h ∈ H, (Wh
ξ : ξ ∈ D) ∈ RD×L++ , with Wh

ξ0
:= whξ0 and Wh

ξ := whξ + YξW
h
ξ− , ∀ξ > ξ0.

(A3) Given (ξ, j) ∈ D+, Aξ,j : P → R+ is continuous.

(A4) Given (ξ, j) ∈ D1 × J(ξ0), Bξ,j is continuous and satisfies Bξ,j(·) ≥ Aξ,j(·).

(A5) There exist ξ ∈ D and j ∈ J(ξ) such that, for each commodity price p ∈ RD×L++ there is a

successor node µ ∈ ξ+ for which min{Aµ,j(p, ·), ‖YµCµ,j‖Σ} > 0.

Proof. We construct a non-trivial equilibrium for our economy as a Nash equilibrium of a gen-

eralized game G where abstract players choose prices and security payments, and agents maximize

objective functions in truncated budget sets.

Spaces of strategies. In the generalized game, feasible commodity and asset prices are restricted to

∆ :=
∏
ξ∈D ∆ξ, where for each node ξ ∈ D \D2, ∆ξ :=

{
v ∈ RL+ × RJ(ξ)∪J(ξ0)

+ : ‖v‖Σ = 1
}

, and for

each terminal node ξ ∈ D2, ∆ξ :=
{
v ∈ RL+ : ‖v‖Σ = 1

}
. Additionally, our equilibrium definition

guarantees that there exists Ω > 0 such that, each (xh, θh, ϕh, ϕα,h, ϕβ,h)h∈H ∈ XH satisfying

(Sξ)ξ∈D1
and market clearing conditions (ii)-(iii) is bounded from above by Ω(1, . . . , 1) ∈ XH .

Let X (Ω) be the collection of allocations in X lower than or equal to 2Ω. Finally, since ∆ is

compact, Assumptions (A3)-(A4) and condition (iv) in the equilibrium definition guarantee that

unitary security payments associated with traded debt contracts are bounded. Thus, there exists

Φ > 0 such that, for each traded debt contract j we have Nµ,j < Φ, ∀µ ∈ D : (µ, j) ∈ D+.
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Hence, for each security j ∈ J(ξ), given µ > ξ it is assumed that Nµ,j ∈ Nµ,j(Φ) := [0,Φ]. Let

N (Φ) :=
∏

(µ,j)∈D+ Nµ,j(Φ).

Players characterization. The game G has a finite number of players whose objectives are:

(i) Given ((p, q, π), N) ∈ ∆×N (Φ), each agent h ∈ H maximizes Uh in Γh(p, q, π,N) ∩ X (Ω).

(ii) Given (xh, θh, ϕh, ϕα,h, ϕβ,h)h∈H ∈ X (Ω)H ,

- A player chooses (pξ0 , qξ0) ∈ ∆ξ0 to maximize

pξ0
∑
h∈H

(
cξ0(xh, ϕh, ϕα,h)− whξ0

)
+ qξ0

∑
h∈H

(
θhξ0 − ϕ

h
ξ0

)
.

- For each ξ ∈ D1, a player chooses (pξ, qξ, πξ) ∈ ∆ξ to maximize∑
h∈H

(
pξ
(
cξ(x

h, ϕh, ϕα,h)− whξ − Yξcξ0(xh, ϕh, ϕα,h)
)

+ qξ
(
θhξ − ϕhξ

)
+ πξ

(
θhξ − θhξ0

))
.

- For each ξ ∈ D2, a player chooses pξ ∈ ∆ξ to maximize

pξ
∑
h∈H

(
cξ(x

h, ϕh, ϕα,h)− whξ − Yξcξ−(xh, ϕh, ϕα,h)
)
.

(iii) Given
(
(p, q, π), (xh, θh, ϕh, ϕα,h, ϕβ,h)h∈H

)
∈ ∆×X (Ω)H ,

- For each (µ, j) ∈ D1 × J(ξ0), a player chooses Nµ,j ∈ [Rµ,j(p, q, π),Φ] to maximize

−

(
Nµ,j

∑
h∈H

ϕhξ0,j −
∑
h∈H

(
Aµ,j(p, q, π)ϕα,hµ,j +Bµ,j(p, q, π)ϕβ,hµ,j + pµCµ,jϕ

γ,h
ξ,j )

))2

.

- For each (µ, j) ∈ D2 × J(ξ0), a player chooses Nµ,j ∈ Nµ,j(Φ) to maximize

−

(
Nµ,j

∑
h∈H

ϕhξ0,j −Rµ,j(p, q, π)
∑
h∈H

ϕh,αµ−,j

)2

.

- For each (µ, j) ∈ D2×J(ξ), a player choosesNµ,j ∈ Nµ,j(Φ) to maximize− (Nµ,j −Rµ,j(p, q, π))
2
.

A vector
(

(p, q, π,N), (xh, θ
h
, ϕh, ϕα,h, ϕβ,h)h∈H

)
∈ ∆×N (Φ)×X (Ω)H is a Cournot-Nash equi-

librium for the generalized game G if it solves all the problems above.

Existence of Cournot-Nash equilibria. Under Assumptions (A1)-(A4), each player in the generalized

game G has a continuous correspondence of admissible strategies, with non-empty, compact, and

convex values. Also, players’ objective functions are continuous and quasi-concave on their own

strategy. Since ∆×N (Φ)×X (Ω)H is non-empty, convex, and compact, Berge’s Maximum Theorem

guarantees that best-reply correspondences are upper hemicontinuous and have non-empty, com-

pact and convex values. Applying Kakutani Fixed Point Theorem to the set-value mapping which

associates to each z ∈ ∆×N (Φ)×X (Ω)H the cartesian product of players’ best-reply strategies to

z, we obtain an equilibrium for G.
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From Cournot-Nash to non-trivial equilibria. Let
(

(p, q, π,N), (xh, θ
h
, ϕh, ϕα,h, ϕβ,h)h∈H

)
be a

Cournot-Nash equilibrium for G. Then, for each h ∈ H, the allocation (xh, θ
h
, ϕh, ϕα,h, ϕβ,h)

belongs to Γh(p, q, π,N) ∩ X (Ω) and, therefore, it satisfies inequalities (Bξ)ξ∈D and (Sξ)ξ∈D1
.

Adding restrictions (Bξ0) across agents we conclude that, the objective function of the player

who chooses (pξ0 , qξ0) has an optimal value less than or equal to zero. Since (pξ0 , qξ0) ∈ ∆ξ0 , this

implies that
∑
h∈H

(
cξ0(xh, ϕh, ϕα,h)− whξ0

)
≤ 0 and

∑
h∈H

(
θ
h

ξ0 − ϕ
h
ξ0

)
≤ 0. Hence, for each agent

h, (xhξ0 , θ
h

ξ0 , ϕ
h
ξ0

) ≤ Ω(1, . . . , 1). That is, upper bounds on individual allocations chosen at ξ0 are

non-binding. For this reason, monotonicity of preferences implies that pξ0 � 0 and that budget

constraints at ξ0 are binding. We conclude that the equilibrium value of the objective function of

the player that chooses (pξ0 , qξ0) is zero, which in turn implies that commodity markets feasibility

condition holds at ξ0 and, for each j ∈ J(ξ0),
∑
h∈H

θ
h

ξ0,j ≤
∑
h∈H

ϕhξ0,j , qξ0,j
∑
h∈H

(
θ
h

ξ0,j − ϕ
h
ξ0,j

)
= 0.

Fix an intermediate node ξ ∈ D1. The definition of Φ guarantees that, for each j ∈ J(ξ0),

Nξ,j

∑
h∈H

ϕhξ0,j =
∑
h∈H

(
Aξ,j(p, q, π)ϕα,hξ,j +Bξ,j(p, q, π)ϕβ,hξ,j + pξCξ,j(ϕ

h
ξ0,j − ϕ

α,h
ξ,j − ϕ

β,h
ξ,j )

)
.

From this identity, adding (Bξ) across agents and given that
∑
h∈H

(
θ
h

ξ0 − ϕ
h
ξ0

)
≤ 0, we get

∑
h∈H

(
pξ
(
cξ(x

h, ϕh, ϕα,h)− whξ − Yξcξ0(xh, ϕh, ϕα,h)
)

+ qξ

(
θ
h

ξ − ϕhξ
)

+ πξ

(
θ
h

ξ − θ
h

ξ0

))
≤ 0.

Therefore, as it was the case at ξ0, upper bounds on individual allocations chosen at ξ are non-

binding. For this reason, monotonicity of preferences ensures that pξ � 0 and that budget con-

straints at ξ are satisfied with equality. Thus, at node ξ commodity markets feasibility conditions

hold and ∑
h∈H

(
θ
h

ξ,j − ϕhξ,j
)
≤ 0, qξ,j

∑
h∈H

(
θ
h

ξ,j − ϕhξ,j
)

= 0, ∀j ∈ J(ξ),

∑
h∈H

(
θ
h

ξ,j − θ
h

ξ0,j

)
≤ 0, πξ,j

∑
h∈H

(
θ
h

ξ,j − θ
h

ξ0,j

)
= 0, ∀j ∈ J(ξ0).

Fix a terminal node ξ ∈ D2. Analogous arguments to those made above guarantee that, for each

j ∈ J(ξ−), Nξ,j = Rξ,j(p, q, π). Also, for each j ∈ J(ξ0),

Nξ,j

∑
h∈H

ϕhξ0,j = Rξ,j(p, q, π)
∑
h∈H

ϕα,hξ−,j .

These properties —jointly with the inequalities
∑
h∈H

θ
h

ξ−,k ≤
∑
h∈H

θ
h

ξ0,k ≤
∑
h∈H

ϕhξ0,k and
∑
h∈H

θ
h

ξ−,j ≤∑
h∈H

ϕhξ−,j , which hold for any (k, j) ∈ J(ξ0) × J(ξ−)— guarantee that after adding (Bξ) across

agents we get that,

pξ
∑
h∈H

(
cξ(x

h, ϕh, ϕα,h)− whξ − Yξcξ0(xh, ϕh, ϕα,h)
)
≤ 0.
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Since pξ ∈ ∆ξ, there is no excess of demand in commodity markets at ξ and, hence, upper bounds on

individual allocations chosen at ξ are non-binding. We conclude that commodity markets feasibility

condition holds at ξ and that pξ � 0. Therefore, p� 0 and commodity market clearing conditions

hold at D.

Given ξ ∈ D \ D2 and j ∈ J(ξ), Nµ,j ≥ Rµ,j(p, q, π), ∀µ ∈ ξ+. Since p � 0, Assumption

(A5) guarantees that there exists at least one security with non-trivial payments. Moreover, for

each security with non-trivial payments, the market clearing condition holds at the emission node.

Otherwise qξ,j = 0, a contradiction with the strict monotonicity of preferences and the fact that

upper bounds on optimal individual allocations are non-binding. Therefore, for each ξ ∈ D \ D2

and j ∈ J(ξ) such that (Nµ,j)µ>ξ 6= 0, we obtain
∑
h∈H

(
θ
h

ξ − ϕhξ
)

= 0.

If for some ξ ∈ D and j ∈ J(ξ),
∑
h∈H

(
θ
h

ξ,j − ϕhξ,j
)
< 0, then qξ,j = 0 and (Nµ,j)µ>ξ = 0. There-

fore, maintaining optimality, for each h ∈ H we can substitute θ
h

ξ,j with θ̂hξ,j := ϕhξ,j . Also, if there

exist (µ, j) ∈ D1×J(ξ0) for which
∑
h∈H

(
θ
h

µ,j − θ
h

ξ0

)
< 0, then πµ,j = 0 and (Nξ,j)ξ∈D2

= 0.6 There-

fore, we can substitute θ
h

µ,j with θ̂hµ,j := θ
h

ξ0,j maintaining optimality. After these modifications,

financial market clearing conditions hold.

Furthermore, these substitutions guarantee that, for each ξ ∈ D1 and j ∈ J(ξ0),

Nξ,j

∑
h∈H

θ
h

ξ0,j =
∑
h∈H

(
Aξ,j(p, q, π)ϕα,hξ,j +Bξ,j(p, q, π)ϕβ,hξ,j + pξCξ,j(ϕ

h
ξ0,j − ϕ

α,h
ξ,j − ϕ

β,h
ξ,j )

)
.

Also, for each ξ ∈ D2 and j ∈ J(ξ0), we have

Nξ,j

∑
h∈H

θ
h

ξ0,j −Rξ,j(p, q, π)
∑
h∈H

ϕα,hξ−,j = 0.

It follows that
(

(p, q, π,N), (xh, θ̂h, ϕh, ϕα,h, ϕβ,h)h∈H

)
satisfies conditions (ii)-(iv) in our equi-

librium definition, with at least one security with non-trivial payments.

Therefore, to ensure that
(

(p, q, π,N), (xh, θ̂h, ϕh, ϕα,h, ϕβ,h)h∈H

)
is a non-trivial equilibrium

for E it is sufficient to show that, for each h ∈ H the allocation zh := (xh, θ̂h, ϕh, ϕα,h, ϕβ,h) is an

optimal choice in Γh(p, q, π,N). Suppose by contradiction that for some h ∈ H there exists another

allocation z̃h := (x̃h, θ̃h, ϕ̃h, ϕ̃α,h, ϕ̃β,h) ∈ Γh(p, q, π,N) such that,

Uh
((
cξ(x̃

h, ϕ̃h, ϕ̃α,h)
)
ξ∈D

)
> Uh

((
cξ(x

h, ϕh, ϕα,h)
)
ξ∈D

)
.

Since zh is in the interior (relative to X ) of Γh(p, q, π,N) ∩ X (Ω) and Uh is strictly quasi-concave,

there exists λ ∈ (0, 1) such that, (xhλ, θ
h
λ, ϕ

h
λ, ϕ

α,h
λ , ϕβ,hλ ) := λzh + (1− λ)z̃h ∈ Γh(p, q, π,N) ∩ X (Ω)

and Uh
((

cξ(x
h
λ, ϕ

h
λ, ϕ

α,h
λ )

)
ξ∈D

)
> Uh

((
cξ(x

h, ϕh, ϕα,h)
)
ξ∈D

)
, a contradiction.

Therefore
(

(p, q, π,N), (xh, θ̂h, ϕh, ϕα,h, ϕβ,h)h∈H

)
is a non-trivial equilibrium for E . �

6This may be a consequence of debt prepayment.
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5. Characterizing Prepayment and Credit Risks

In this section we provide necessary and sufficient conditions that induce borrowers to close

short positions before terminal nodes, either prepaying or defaulting. These conditions depend on

observable market variables and contractual characteristics.

We begin with results that characterize optimal payment strategies independently of the existence

of alternative credit opportunities. More precisely, at each intermediate node ξ ∈ D1, if the cost

associated with closing a debt position on j ∈ J(ξ0) is lower than the present value of commitments,

then agents prepay or default on their j-debt. In addition, if the cost of closing a debt is higher than

the present value of future commitments, then borrowers whose optimal actions are not affected by

collateral constraints pay the coupons and maintain the short position open.

Proposition 1. Under Assumptions (A1)-(A2), assume that for all agents h ∈ H, Uh : RD×L → R

is continuously differentiable. Let
(

(p, q, π,N), (xh, θ
h
, ϕh, ϕα,h, ϕβ,h)h∈H

)
be an equilibrium. For

each h ∈ H, let (λh(η))η∈D be agent h’s Kuhn-Tucker multipliers associated with budget constraints.

Fix (h, ξ, j) ∈ H ×D1 × J(ξ0) such that ϕhξ0,j > 0 and define

Φhξ,j(p, q, π) = min{Bξ,j(p, q, π), pξCξ,j} −

Aξ,j(p, q, π) +
∑
µ∈ξ+

λh(µ)

λh(ξ)
Rµ,j(p, q, π)

 .

If Φhξ,j(p, q, π) < 0, then agent h closes short positions on j at ξ.

If Φhξ,j(p, q, π) > 0 then agent h reduces short-positions on j at ξ only when collateral constraints

associated with credit contract j are active at ξ.

Proof. From Arrow and Enthoven (1961), the usual Kuhn-Tucker conditions are necessary for

optimality. From the partial derivatives of agent h’s Lagrangian function with respect to xhξ and

ϕα,hξ,j we obtain,

pξCξ,j = Aξ,j(p, q, π) +
∑
µ∈ξ+

λh(µ)

λh(ξ)
Rµ,j(p, q, π) +

κhξ,j + νhξ Cξ,j − η
α,h
ξ,j

λh(ξ)
,

where κhξ,j ≥ 0 is the Kuhn-Tucker multiplier of constraint ϕα,hξ,j + ϕβ,hξ,j ≤ ϕhξ0,j , ν
h
ξ ∈ RL+ is the

vector of multipliers associated with xhξ ≥ 0, and ηα,hξ,j ≥ 0 is the multiplier of the non-negativity

constraint of ϕα,hξ,j . From this condition, and using the partial derivative of agent h’s Lagrangian

function with respect to ϕβ,hξ,j we have,

Bξ,j(p, q, π) = Aξ,j(p, q, π) +
∑
µ∈ξ+

λh(µ)

λh(ξ)
Rµ,j(p, q, π) +

ηβ,hξ,j + νhξ Cξ,j − η
α,h
ξ,j

λh(ξ)
,
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where ηβ,hξ,j ≥ 0 is the multiplier of the non-negativity constraint of ϕβ,hξ,j . Thus, we obtain that,

Φhξ,j(p, q, π) =
νhξ Cξ,j − η

α,h
ξ,j

λh(ξ)
+

min{ηβ,hξ,j , κhξ,j}
λh(ξ)

.

Therefore, Φhξ,j(p, q, π) < 0 implies that ηα,hξ,j > 0. Thus, when Φhξ,j(p, q, π) < 0 agent h closes short

positions on j at ξ. On the other hand, suppose that Φhξ,j(p, q, π) > 0 and that agen h’s collateral

constraints for credit contract j are not active at ξ, i.e., νhξ = 0. Then, min{ηβ,hξ,j , κhξ,j} > 0. Hence,

both ϕβ,hξ,j = 0 and ϕα,hξ,j + ϕβ,hξ,j = ϕhξ0,j , implying ϕα,hξ,j = ϕhξ0,j . �

The previous proposition shows that agents close debts when either prepayment or default cost is

low. Furthermore, independently of the existence of alternative credit opportunities, when collateral

constraints do not affect optimal behavior, underwater loans are possible in equilibrium. Indeed,

suppose that there exists a node ξ ∈ D1 such that, for some j ∈ J(ξ0) and h ∈ H we have ϕhξ0,j > 0

and

Bξ,j(p, q, π) > pξCξ,j > Aξ,j(p, q, π) +
∑
µ∈ξ+

λh(µ)

λh(ξ)
Rµ,j(p, q, π).

In this situation, if agent h demands autonomous consumption of all commodities used as collateral

by credit contract j, then the short position on this asset is maintained at ξ.

The existence of alternative credit opportunities may expand borrowers’ options to close debts, a

possibility that is particularly relevant when the cost of this action is higher than the present value

of commitments. The following result shows that, if alternative credit opportunities are available,

borrowers determine optimal payment strategies by comparing collateral margins and expected

commitments across debt contracts.

Proposition 2. Under Assumptions (A1)-(A2), assume that for all agents h ∈ H, Uh : RD×L → R

is continuously differentiable. Let
(

(p, q, π,N), (xh, θ
h
, ϕh, ϕα,h, ϕβ,h)h∈H

)
be an equilibrium. Fix

(ξ, j) ∈ D1 × J(ξ0) such that Ψξ,j(p, q, π) := min{Bξ,j(p, q, π), pξCξ,j} −Aξ,j(p, q, π) > 0. For each

h ∈ H, let (λh(η))η∈D be agent h’s Kuhn-Tucker multipliers associated with budget constraints.

Then, an agent h closes short positions on j when there is a credit line k ∈ J(ξ) for which

Cξ,k
qξ,k

≤ Cξ,j
Ψξ,j(p, q, π)

, and
∑
µ∈ξ+

λh(µ)
Rµ,k(p, q, π)

qξ,k
<
∑
µ∈ξ+

λh(µ)
Rµ,j(p, q, π)

Ψξ,j(p, q, π)
.

In this situation, agent h prepays debt j if and only if Bξ,j(p, q, π) ≤ pξCξ,j.

Proof. Assume that for some debt contract k ∈ J(ξ) conditions above hold. Suppose that,

after issuing ϕhξ0,j units of j at ξ0, j-borrower h maintains a position ϕα,hξ,j ∈ (0, ϕhξ0,j ] at node ξ.

Therefore, h should pay Aξ,j(p, q, π)ϕα,hξ,j , consume the collateral bundle Cξ,jϕ
α,h
ξ,j , and deliver a

payment Rµ,j(p, q, π)ϕα,hξ,j at each terminal node µ ∈ ξ+. It can be shown that this strategy is not

optimal.
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Indeed, consider the following alternative: agent h closes the short position ϕα,hξ,j and trades

ϕ̃kϕ
α,h
ξ,j units of debt contract k, where ϕ̃k =

Ψξ,j(p,q,π)
qξ,k

. There is no additional cost at ξ, i.e.,

Ψξ,j(p, q, π)ϕα,hξ,j − qξ,kϕ̃kϕ
α,h
ξ,j = 0. Since

Cξ,k
qξ,k
≤ Cξ,j

Ψξ,j(p,q,π) , the original consumption bundle at ξ

satisfies agent h’s new collateral requirements. Finally, the new payments at terminal nodes imply

that the Lagrangian function increases, as
∑
µ∈ξ+

λh(µ) (Rµ,j(p, q, π)−Rµ,k(p, q, π)ϕ̃k)ϕα,hξ,j > 0.

Hence, any strategy that maintains open a short position on j at ξ is not optimal. �

Notice that, Propositions 1 and 2 show that the availability of alternative credit opportunities

could be incompatible with the existence of individuals who partially finance their consumption

through long term credit, i.e., the existence of h ∈ H such that xhξ �
∑

j∈J(ξ0)

Cξ,jϕ
h,α
ξ,j > 0 at some

ξ ∈ D1.7

It follows from the result above that the presence of atractive alternative credit opportunities

avoids underwater loans in equilibrium. In this direction, and under the appropriate specification

of credit contracts, the model of Araujo, Páscoa, and Torres-Mart́ınez (2011) is a particular case

of our framework. Indeed, given (ξ, j) ∈ D1 × J(ξ0) suppose that there exists a debt contract

k ∈ J(ξ) with the same collateral requirements and future promises as j, i.e., Cξ,k = Cξ,j and

Rµ,k(p, q, q) = Rµ,j(p, q, π), ∀(p, q, π) ∈ P, ∀µ ∈ ξ+. Then, j-borrowers close their debt at ξ when

Ψξ,j(p, q, π) < qξ,k and they would be indifferent if both magnitudes were equal. Since Araujo,

Páscoa and Torres-Mart́ınez (2011) do not allow for liquidity contractions, the prepayment cost

is implicitly given by Aξ,j(p, q, π) + qξ,k. Therefore, all borrowers will optimally close debts at

intermediate nodes, defaulting if the collateral value pξCξ,j is lower than the prepayment cost

Aξ,j(p, q, π) + qξ,k. Thus, this model does not capture underwater mortgages.

Our previous propositions are based on individual income shadow values. However, under some

circumstances optimal payment strategies can be specified in terms of observable variables.

Corollary. Under Assumptions (A1)-(A2), assume that for all agents h ∈ H, Uh : RD×L → R

is continuously differentiable. Let
(

(p, q, π,N), (xh, θ
h
, ϕh, ϕα,h, ϕβ,h)h∈H

)
be an equilibrium. Fix

(ξ, j) ∈ D1 × J(ξ0) for which Ψξ,j(p, q, π) > 0. If the following conditions are satisfied,

Cξ,k
qξ,k

≤ Cξ,j
Ψξ,j(p, q, π)

, and

(
Rµ,k(p, q, π)

qξ,k

)
µ∈ξ+

<

(
Rµ,j(p, q, π)

Ψξ,j(p, q, π)

)
µ∈ξ+

,

then all agents close their j-debts at ξ.

7In fact, under this condition, Proposition 1 shows that agent h maintains short positions on credit contracts on

J(ξ0) at node ξ. However, Proposition 2 implies that this behavior is not optimal if there exist better credit options.
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6. Concluding Remarks

We propose a model of long-term loans backed by physical collateral, in which borrowers may

prepay their debts before terminal nodes. This model extends Geanakoplos and Zame (1997, 2002,

2007) theoretical framework to allow for long-term loans and liquidity contractions. Under mild

conditions, we prove existence of equilibrium and provide a theoretical characterization of optimal

payment strategies.

We show that in equilibrium, agents decide to close their debts before terminal dates —either

prepaying or defaulting— if closing a short position is less costly than the expected present value

of commitments. However, this condition is not homogeneous across agents and, hence, optimal

payment strategies depend on individual characteristics. Moreover, this decision also depends on

financial markets liquidity. The absence of better credit opportunities makes some individuals more

prone to honor original commitments in order to maintain the consumption of collateralized durable

goods. That is, borrowers can react to liquidity shrinkages by paying coupons of debt instead of

closing short positions. Therefore, the lack of liquidity could make it optimal for borrowers to

honor their commitments even though the collateral value were lower than the prepayment value

(underwater mortgage).

We provide a numerical example illustrating that optimal payment strategies —payment, pre-

payment, and default— depend on individual characteristics and financial markets liquidity.

It is well known that, without liquidity contractions, collateral avoids Ponzi schemes and equi-

librium exists in infinite horizon collateralized asset markets. Furthermore, the absence of asset

pricing bubbles on durable commodity prices avoids bubbles on collateralized securities (see Araujo,

Páscoa, and Torres-Mart́ınez (2002, 2011)). As a matter of future research, we plan to extend these

results to our model with liquidity contractions and prepayment rules.
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