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Abstract

Renewable energy can yield social benefits through local air quality improvements

and their subsequent effects on human health. We estimate some of these benefits

using data gathered during the rapid adoption of large-scale solar power generation

in Chile over the last decade. Relying on exogenous variation from incremental solar

generation capacity over time, we find that solar energy displaces fossil fuel generation,

primarily coal-fired generation, and curtails hospital admissions, particularly those

due to lower respiratory diseases. These effects are noted mostly in cities downwind of

displaced fossil fuel generation and are present across the most vulnerable age groups.

Our results document the existence of an additional channel through which renewable

energy can increase social welfare.
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1 Introduction

Renewable energy is the world’s fastest-growing energy source, set to become the leading

source of primary energy consumption by 2050 (U.S. Energy Information Administration,

2019). It can provide several benefits to society, ranging from reductions in greenhouse gas

emissions and discharges of local air pollutants to reduced dependence on imported fuels

and the creation of jobs through the manufacturing and installation of these resources (U.S.

Environmental Protection Agency, 2019). Yet, we still lack a good understanding of the

magnitude of some of these benefits, notably those associated with reduced air pollution

and health improvements. In this work, we use the rapid adoption of large-scale solar power

generation in the desert region of northern Chile to empirically quantify some of the health

benefits of solar energy through improvements in air quality.

Fossil fuel power generation, particularly that from coal combustion, releases large

amounts of local air pollutants, including sulfur dioxide (SO2), nitrogen oxides (NOX), and

particulate matter (PM). These pollutants are associated with several adverse health effects,

along with increased hospital admissions, mortality risks, and threats to life expectancy.1

The extent to which these emissions are curtailed with the introduction of renewables re-

flects the potential of alternative energy sources to offset some of the negative effects of dirty

electricity generation. Nonetheless, some fossil fuel plants (e.g., natural gas plants) have con-

sistently been dispatched to deal with the intermittency of renewables (Fell and Linn, 2013),

thereby attenuating the benefits of increasing the supply of these sources. More insights

on the co-benefits of renewable energy are, therefore, crucial to the cost-benefit analyses of

transitioning away from fossil fuels and, in turn, for the optimal design of energy policy.

The Atacama Desert, one of the sunniest and driest deserts in the world, not only has

the highest average surface solar radiation worldwide (Rondanelli et al., 2015), but also the

highest solar power potential. Figure 1 shows Chile’s photovoltaic power potential—a solar

energy system’s maximum productivity over time—relative to the rest of the world. This

potential, together with the recent decline in the cost of photovoltaic (PV) technology and

the country’s regulations aimed at fostering the adoption of renewables, resulted in rapid

market penetration of solar generation in Chile. By the end of 2012, a variety of solar

plants with capacities ranging from 3 MW to 138 MW were already injecting electricity

into Chile’s northern electric grid. By 2017, solar accounted for 10 percent of the system’s

total generation. We take advantage of this surge in large-scale investments in solar energy

to explore the effects of the steady expansion in solar capacity on generation from thermal

1For comprehensive reviews, see Currie et al. (2014) on the effects of early-life exposure to pollution, and
Hoek et al. (2013) on the mortality impact of long-term air pollution exposure.
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Figure 1: Chile’s Photovoltaic Power Potential (kWh/kWp)

Notes: This figure shows Chile’s photovoltaic power potential, which refers to how much energy (kWh) is produced per kilowatt
peak (kWp) of a system. Figure retrieved from https://globalsolaratlas.info. Solar resource data was obtained from the
Global Solar Atlas, owned by the World Bank Group and provided by Solargis.

plants and on human health in northern Chile. By exploring the case of Chile, we add to the

scant literature on power plant pollution exposure and health impacts in emerging economies

(Gupta and Spears, 2017; Barrows et al., 2018).

Our study uses data on solar generation between 2012 and 2017. To identify the effects

of this increasing solar expansion, we first estimate the extent to which solar plants displace

other power facilities using daily variation in plant-level power generation capacity.2 For so-

lar generation to have a positive effect on health outcomes, it must first displace generation

by thermal plants, thereby reducing pollution levels from the baseline.3 After identifying

the set of displaced thermal power plants, we estimate a reduced form health equation on

the effect of daily solar generation on daily hospital admissions. In particular, we use hos-

pital admissions of patients with diagnoses associated with cardiovascular and respiratory

diseases, conditions generally related to the combustion of fossil fuels. To reduce any po-

tential endogeneity between power generation and health as well as to take into account the

transport of pollutants, we leverage our findings on fossil fuel plant displacement and identify

cities that are downwind to and near these displaced plants, and run separate regressions for

this subsample of cities. In doing so, we rely on the identifying assumption that the harmful

2Ideally, we would use plant-level emissions data. Unfortunately, the emissions data that are collected
by the government are not observed data, rather, they are engineering estimates based on generation (thus,
they are a simple transformation of the kWh generated in each hour). Due to this data limitation, we utilize
generation as a proxy for emissions.

3The alternative is that solar generation rises to meet expanding demands for electricity. In this case, there
would be no displacement of fossil fuel plants, and the health impacts of the energy system would remain
unchanged, although health improvements would have been seen relative to a counterfactual of increased
fossil fuel generation in response to increased loads.
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effects of local air pollution exposure are stronger downwind of the pollution source and

decrease with distance. Finally, to attribute the health effects to air quality improvements,

we use additional (but limited) data on fine PM concentrations for a subset of our cities and

estimate an instrumental variable approach that uses solar as an instrument for pollution in

our health regressions.

Our results show that increased solar generation in Chile led to a displacement of daily

thermal generation, particularly of coal- and gas-fired power generation. This displacement

is robust to leveraging variation in daily solar capacity factor, suggesting that increased

solar capacity over time is driving the results. Subsequently, we find that, through this

displacement, solar generation reduces respiratory admissions, particularly admissions due

to lower respiratory diseases in all cities included in our sample. We find these reductions to

be predominantly in cities downwind of and in close proximity to these displaced facilities.

Specifically, we find that one additional GWh of solar generation led to a 10.8% reduction

in hospital admissions due to lower respiratory conditions across all cities, and to a 14.5%

reduction across downwind cities within 10km of distance from displaced fossil fuel plants.

Our analysis by age group indicates that these reductions are mostly observed among infants

(less than 1 year old) and toddlers (ages 1–5), the most vulnerable age groups, and occur

primarily after short-term exposure to abated pollution from displaced thermal plants. These

results remain unchanged after several robustness checks, which include the use of predicted

displacement, alternative estimation methods, the use of cities upwind of displaced facilities

and those downwind of non-displaced units, and the use of hospital admissions of patients

with diseases presumably not related to air pollution as alternative outcomes. An alternative

analysis using limited air pollution monitoring data also corroborates these results.

Several reasons lead us to consider our findings as a lower bound on the true health

benefits of solar generation, particularly in developing countries. First, our area of study

(Chile’s northern region) has limited healthcare infrastructure. Therefore, any reduction in

hospitalizations may have a beneficial spillover effect by increasing the number of hospital

beds available in turn helping reduce the number of untreated unrelated injuries and illnesses.

Second, reductions in air pollution exposure for young children and infants have a lifelong

benefit in terms of reduced illnesses and improved economic outcomes (Currie et al., 2014).

Third, communities with greater shares of low-income households and minorities may live

closer to large air polluters in Chile, as has been demonstrated in both the U.S. and India

(Banzhaf et al., 2019; Kopas et al., 2020).4 In this case, improvements in air quality may

4Previous evidence shows indications that lower-income populations in Chile are more likely to live near
environmental disamenities, such as mining. For example, Rivera (2020) finds that residential properties
near mining sites in northern Chile have lower values and that these values are particularly salient for new
residents in the area, suggesting an environmental-based sorting. These inequities may also be caused by
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not only bring greater long-term benefits to populations experiencing uneven exposure to air

pollution but also help to reduce inequities caused by pollution exposure.5

A wide number of papers document the displacement of coal-fired power plants, either

through a decline in the price of natural gas (Linn et al., 2014; Knittel et al., 2015; Cullen

and Mansur, 2017; Holladay and LaRiviere, 2017; Linn and Muehlenbachs, 2018; Johnsen

et al., 2019), through the expansion in renewable generation capacity (Kaffine et al., 2013;

Cullen, 2013; Novan, 2015; Callaway et al., 2018; Fell et al., 2021; Bushnell and Novan, 2021),

or through interactions between the two (Holladay and LaRiviere, 2017; Fell and Kaffine,

2018). These studies also document significant interactions among competing renewables,

whereby solar generation can lead to a shift in the supply of hydropower. To the extent that

renewables offset and displace one another, the injection of new renewable sources into the

grid may lead to ambiguous environmental impacts. One of the benefits of conducting this

analysis in northern Chile is the small amount of non-solar renewables on the grid during

the study period (contributing only 6% of total capacity in 2017, combined). This allows us

to effectively isolate the impact of solar generation on fossil fuel displacement more clearly.

We extend this previous literature by empirically documenting some of the consequences

of thermal displacement on morbidity outcomes. A small subset of literature estimates the

effect of changes in the power sector on health. For example, Burney (2020) estimates the

health benefits associated with the shift from coal to natural gas combustion in the U.S.,

finding that the exit of coal-fired plants between 2005 and 2016 saved approximately 26,000

lives. Along those lines, Casey et al. (2018a) find that coal and oil power plant retirement

in the U.S. led to improvements in fertility outcomes, and Casey et al. (2018b) show the

link between these retirements and a decrease in preterm births among nearby populations.

Our work adds to this literature, presenting new evidence on the benefits that curtailing

coal-fired generation has on morbidity. Moreover, we estimate this impact even without coal

plant retirement; rather, we can identify the health benefits of having a large amount of

solar generation at the intensive margin, even if it does not lead to coal plant shutdowns.

In doing so, we contribute to the literature by quantifying the value of curtailing coal-fired

generation.

The analysis of solar generation also represents an advantage in evaluating the health

benefits of renewables relative to other similar sources such as wind. Increases in wind

power generation may be associated with reduced pollution due to higher wind speeds and

housing siting decisions; for example, Rau et al. (2015) shows evidence of government housing projects built
in close proximity to mining waste sites in the city of Arica, also located in northern Chile.

5There are additional benefits from power plants’ emission reductions that go beyond the health and
emissions dimensions. For instance, see Rivera and Loveridge (2022) and Mei et al. (2021) on the property
value impacts of fuel switching in the U.S. and China, respectively.
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greater dispersion, hampering the identification of health impacts. One exception, however,

is Fell and Morrill (2022) which find fewer emergency room visits in Texas due to day-to-day

variation in wind energy and a subsequent curbing of thermal generation. An alternative

body of work identifies the health benefits of a cleaner grid (Spiller et al., 2021; Anenberg

et al., 2012; Muller and Mendelsohn, 2009) or the addition of new utility-scale solar capacity

(Sergi et al., 2020) in integrated assessment frameworks. These studies employ cutting-edge

air transport and chemical transformation models but use existing epidemiological literature

and underlying health and population statistics to calculate the impact of policies on health.

To the best of our knowledge, we are the first to empirically test the impact of increased

large-scale solar generation on health. Therefore, our work also adds to the growing literature

on the co-benefits of renewable generation (Siler-Evans et al., 2013; Barbose et al., 2016;

Buonocore et al., 2016; Spiller et al., 2017; Millstein et al., 2017; Fell and Morrill, 2022), a

key aspect in evaluating the economic potential of renewable energy portfolios (Edenhofer

et al., 2013; Wiser et al., 2017; Hollingsworth and Rudik, 2019), and in the design of health-

based air quality regulations (Abel et al., 2018; Thakrar et al., 2020).

The remainder of our work proceeds as follows. We review the literature on the health ef-

fects of power plant emissions in Section 2, demonstrating that emissions from thermal power

generation can cause a variety of different negative health impacts, with major morbidity

impacts on respiratory and cardiovascular outcomes—the two health outcomes on which we

focus. In Section 3, we describe the power sector in Chile detailing the aspects of the in-

dependent northern grid we are studying in this paper as well as describing how plants are

dispatched, which helps inform our displacement analysis. We present the data in Section

4, including data on health outcomes, power plant generation, wind directions, and control

variables such as demographic information. In Section 5, we lay out our empirical strategy

as well as our identification approach, which relies upon wind direction and the results from

our displacement analysis to identify downwind cities. The results and robustness checks are

in Sections 6 and 7, respectively, where we show that solar can effectively displace thermal

power generation and improve health outcomes, particularly in downwind cities, and that

our results are robust across different methodologies and approaches. Finally, we conclude

in Section 8 with a discussion about the policy implications of our findings.

2 Power Plants’ Emissions and Health Consequences

Fossil-fuel electricity generation accounts for a large share of greenhouse gas emissions,

particularly carbon dioxide (CO2). The sector is also a major driver of outdoor air pollution,

primarily due to the burning of coal, which releases important amounts of airborne pollutants
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such as sulfur dioxide (SO2), nitrogen oxides (NOX), mercury (Hg), and particulate matter

(PM). All of these pollutants are associated with adverse health effects, mortality risks,

and threats to life expectancy (Chay and Greenstone, 2003a,b; Currie and Neidell, 2005;

Currie et al., 2009; Chen et al., 2013; Arceo et al., 2016; Knittel et al., 2016; Schlenker

and Walker, 2016; Lavaine and Neidell, 2017). Here, we briefly summarize the evidence on

the detrimental health impact of exposure to the main pollutants from coal combustion.

Evidence suggests its displacement by solar generation is expected to curtail mostly SO2,

NOX , and PM emissions.

SO2 is an invisible gas, part of the sulfur oxide (SOX) family of gases, formed when

fuel containing sulfur (e.g., coal, oil) is burned (U.S. Environmental Protection Agency,

2014). Exposure to high concentrations of SO2 is associated with eye, nose, and throat

irritation, infectious complications of chronic obstructive pulmonary disease, and increases

in hospital admissions due to obstructions of the lower airway (e.g., asthma) (World Health

Organization, 2006). SO2 reacts with other compounds in the atmosphere to form fine PM.

PM is the general term used to describe solid particles, dust, and drops found in the air,

all with different compositions and sizes. Evidence on the health impact of exposure to

coarse PM (PM10) and fine PM (PM2.5) suggests detrimental effects on a variety of health

outcomes, including respiratory diseases (Schwartz, 1996), cardiovascular diseases (Schwartz

and Morris, 1995; Brook et al., 2010; Franklin et al., 2015), low birth weight (Currie et al.,

2009; Currie and Walker, 2011), and infant mortality (Chay and Greenstone, 2003a,b; Arceo

et al., 2016; Knittel et al., 2016).

NOX are reactive gases and include nitrogen dioxide (NO2), nitrous acid (HNO2), and

nitric acid (HNO3). Although mobile sources may contribute to greater releases of NOX into

the atmosphere, stationary fossil fuel combustion represents a significant portion of annual

domestic NOX emissions. Outdoor exposure to NOX has been found to increase asthma and

bronchitis diagnoses in children (Pershagen et al., 1995; Chauhan et al., 2003; Gauderman

et al., 2005), and on older populations (Schlenker and Walker, 2016). This pollutant can also

react in the presence of heat and sunlight in the atmosphere to create ground-level ozone,

a harmful chemical associated with lung diseases and premature deaths (Bell et al., 2004,

2005).

3 The Power Sector in Chile

The electricity sector in Chile is composed of three different segments: generation, trans-

mission, and distribution, all 100% privately owned. Before 2018, Chile’s electricity market

featured four different electric systems (see Appendix Figure A1): two major interconnected
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systems, the Northern Interconnected System (SING) and the Central Interconnected System

(SIC); and two additional minor grids, the Aysen Electric System (SEA) and the Magal-

lanes Electric System (SEM). The SING system, located in Chile’s northern region, has 5

GW of installed capacity, 2.5 GW of peak load, and more than 85% reliance on fossil fuel

generation (i.e., coal, natural gas, and diesel). Although the northern region of Chile is

relatively unpopulated, with SING serving only 7% of the country’s total population, this

region hosts most of the large-scale copper mining companies that operate in the country, a

sector characterized by its electricity-intensive production activities.6

3.1 The Generation Segment

Electricity generation in Chile is produced in a competitive market, though the transmis-

sion and distribution sectors are regulated. Generation at SING is characterized by a spot

market, long-term forward contracts, and capacity payments. The spot market relies upon

merit-order dispatch under the coordination of the Economic Load Dispatch Center (CDEC),

which, to meet the system’s load, dispatches generators at every hour based strictly on their

marginal cost. Thus, the hourly marginal cost of the system equals the cost of the most

expensive unit being dispatched (Galetovic and Muñoz, 2011).7 This dispatch, determined

by CDEC based on fuel costs, informs our methodology in estimating the displacement of

fossil fuel plants by solar generation. Specifically, we incorporate the relative costs of fossil

fuels into our dispatch equation to control for the market forces that will play a large role in

determining dispatch and the ability of solar to displace fossil fuel plants (see Section 5.1).

On the Increase in Solar Generation. Although numerous PV systems have existed

in Chile since 2007, they were mostly in the form of small-scale stand-alone systems and

part of rural electrification programs (Haas et al., 2018). In 2008, however, the Chilean

government established a quota system for renewable energies (“Ley de Enerǵıas Renovables

No Convencionales”—ERNC); this currently requires these sources to account for 20% of

participation in the energy mix by 2025 (Ministry of Energy, 2013). The ERNC policy, in

combination with decreasing costs in PV technology, led to the installation in 2012 of the

first large-scale solar plant in northern Chile, La Huayca, adding 25.05 MW of gross capacity

6Conversely, the SIC system, located in central-south Chile and with 17 GW of total installed capacity
and 7 GW of peak load, relies heavily on hydro generation (around 35%) and serves 90% of the country’s
population. These two major grids, SING and SIC, began an interconnection process in November 2017 that
resulted in a full integration by May 2019, thereby creating Chile’s National Electric System (SEN). In this
paper, we focus on the period before November 2017, thus avoiding any potentially confounding factors that
may be associated with the interconnection itself.

7Regardless of whether generators are dispatched, each of these agents receives a monthly capacity pay-
ment aimed at guaranteeing enough generation capacity to supply energy during times of peak demand.
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to SING. By 2015, solar participation at SING reached 119 MW, equivalent to 2% of the

total daily system generation (≈.376 GWh). By the end of 2017, this participation had

grown to 655 MW, equivalent to 10% of total daily system generation (≈1.5 GWh).8
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Figure 2: SING’s Monthly Fossil Fueled and Solar Power Generation

Notes: This figure shows monthly power generation at Chile’s northern grid, SING, by fuel source from 2012 to 2017. Data are
reported in percentages relative to SING’s monthly generation. Fossil fuels’ monthly generation is shown in the main y-axis.
Solar monthly generation is shown in the secondary y-axis. Data come from the National Electricity Coordinator from 2012 to
2017.

This can be seen clearly in Figure 2, which depicts the share of SING’s monthly power

generation by both fossil fuel and solar facilities during the sample period. At the start of

the period, power generation at SING was (almost fully) coming from fossil fuels, with coal

alone representing around 85% and natural gas roughly covering the other 15%. The increase

in solar over time coincides with the persistent decrease in fossil fuel power generation over

the same period. By the end of 2017, coal-generated electricity represented around 77% of

SING’s monthly generation, while natural gas use was equivalent to less than 10%.9

3.2 Power Plants’ Emissions

The power sector accounts for roughly 40% of Chile’s total greenhouse gas emissions.

It produces 34,568.2 kt and 1.6 kt of carbon dioxide equivalent emissions (CO2e) due to

8Data retrieved from the annual reports of Chile’s National Energy Commission (CNE), https://www.
cne.cl/nuestros-servicios/reportes/informacion-y-estadisticas/

9Appendix Figure A4 shows SING’s total monthly load over the sample period (dashed line). The
increasing trend in demand over time indicated in this graph rules out a demand-driven reduction in fossil
fuel power generation. The figure also shows that SING’s total monthly solar generation (solid line) has
increased at a faster rate than demand over the same period.

9
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CO2 and methane (CH4) discharges, respectively (Chile Environmental Ministry, 2018). In

terms of criteria air pollutants, the sector is responsible for more than 30% of the country’s

total NOX and SO2 emissions, a situation that is aggravated by the longevity of some fossil

fuel power plants, as older plants generally emit more. In SING, for instance, some coal-

fired generators are the oldest in the country, with ages that in some cases exceed 50 years

(Programa Chile Sustentable, 2017). Annual discharges from the sector comprise 57% and

40% of the northern grid’s total SO2 and NOX emissions, respectively (Chile Environmental

Ministry, 2017). Regarding PM, the country generally registers high levels of daily average

PM2.5 concentrations, and in northern Chile, these levels are largely due to the region’s

dependence on fossil fuel power generation (Chile Environmental Ministry, 2017).10

Air pollution monitoring at the city level is limited in the country. For the cities in our

analysis, only four of them have monitoring stations that record PM2.5, and only one of

them records NOX and SO2 concentrations. Appendix Figure A2 depicts monthly average

PM2.5 concentrations from 2012 to 2017 across the four cities in our sample with available

PM2.5 daily data. We include in solid gray the date (month and year) of connection of

the solar plants in our sample and in dashed red the WHO’s air quality standard of 15

µg/m3 for 24-hour averages as a reference. As shown, monthly average concentrations have

decreased over time but still exceed air quality standards during certain times of the year.

This situation highlights the importance that solar-powered electricity can play in reducing

environmental-related health concerns in areas with a heavy reliance on fossil fuels.

Figure 3 illustrates hourly average SO2 (3(a)), NOX (3(b)) and PM2.5 (3(c)) concentra-

tions in one of these cities, Tocopilla, the city with the highest number of coal-fired plants in

SING. We see the distribution of hourly pollution 30 days before the first solar connection in

our sample (black line), and 30 days after the last one (gray line). Relative to the situation

before the first solar connection, Figure 3(a) depicts a statistically significant decrease in

hourly SO2 concentrations right after all solar plants were connected to the system, partic-

ularly during the hours in which solar panels are at peak capacity (between 10 am and 3

pm). We see a similar trend in panel (b) for NOX , although the difference in concentrations

before and after seems to lack statistical significance. Finally, panel (c) shows that PM2.5

significantly decreased during hours of morning sunshine: from 8 am to 11 am. The extent to

which these reductions are effectively due to the entry of new solar installations anticipates

the potential positive health impact of a cleaner grid.

10Previous studies have documented some of the harmful effects of PM exposure in Chile. For instance,
Dardati et al. (2021) show that increases in PM2.5 lead to a rise in respiratory emergency room visits, Bonilla
et al. (2021) document a positive association between long-term PM2.5 exposure and incidence of COVID-19
mortality, and Bharadwaj et al. (2017) expose some of the long-term harmful effects of early-life exposure
to CO (and PM) on cognitive performance.
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Figure 3: Hourly Sulfur Dioxide (SO2), Nitrogen Oxide (NOX), and Fine Particulate Matter
(PM2.5) Average Concentrations in Tocopilla Before and After the First Solar Connection

Notes: This figure shows point estimates and 95% confidence intervals for hourly average concentrations in the city of Tocopilla
30 days before and 30 days after the first and last solar power connections. Point estimates are obtained after regressing hourly
concentrations averaged across stations on dummies for hours interacted with an indicator taking the value of 1 for observations
after the last solar connection, and 0 for observations before the first solar connection. Hourly predictions “30 days before the
first solar connection” correspond to observations before October 1st, 2012. Hourly predictions “30 days after the last solar
connection” correspond to observations after July 21st, 2017. SO2 and PM2.5 are measured in micrograms per cubic meter
of air (µg/m3), and NOX in parts per billion (ppb). Data come from the Ministry of Environment through the National Air
Quality Information System (SINCA). From the original data, we trim the top and bottom 1% of all observations.
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Figure 4: SING’s Hourly Generation by Fuel Before and After Large-Scale Solar Installations

Notes: This figure shows SING’s total hourly generation by fuel source before and after large-scale solar power generation
investments. The left-hand side graph shows hourly generation (in MWh) by fuel averaged over the first week of January 2016
(with 322 MW of net solar capacity). The right-hand side graph shows hourly generation (in MWh) by fuel averaged over the
last week of October 2017 (with 654 MW of net solar capacity). Data come from the National Electricity Coordinator from
2016 to 2017.

Notwithstanding, reductions in pollution over time could potentially be explained by

other factors such as improvements in emissions intensity from coal and natural gas plants,

or the retirement of dirty, old fossil fuel plants during this time period. In this case, we

would expect to see reductions across all hours, particularly those hours in which coal and

natural gas were on the margin. However, Figure 4 on SING’s hourly generation by fuel

source suggests otherwise. This figure illustrates hourly generation averaged over the first

week of January 2016 (left-hand side, total of 332 MW of solar capacity), and the last week of

October 2017 (right-hand side, total of 654 MW of solar capacity), just before the SING–SIC

interconnection.11 When comparing these two periods in Figure 4, we observe increased solar

capacity largely displaced hourly coal- and gas-fired combustion during Atacama’s sunlight

hours (7 a.m.–7 p.m.). Additionally, it demonstrates a relatively flat load. Thus, improve-

ments in emissions intensity and/or exit of dirty fossil fuel plants would most likely lead to

an overall reduction in emissions across all hours and would unlikely have a particularly large

effect during sunshine hours. Thus, Figure 3 and Figure 4 together suggest solar is leading to

drops in air pollution during the sunshine hours as it displaces fossil fuel generation, mostly

coal-fired generation.

Preferably, we would test the main hypothesis of this paper using data similar to those in

11Unfortunately, publicly available hourly generation data start only in 2016.
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Figures 3 and A2. As mentioned earlier, however, we lack comprehensive city-level data on

airborne pollution concentrations for all the cities in our sample, as air quality monitoring

stations in Chile are scarce for cities other than Santiago. We address this limitation with

our displacement analysis, effectively proxying for changes in emissions due to changes in

fossil fuel-based generation. Later in the paper, we employ the available data on PM2.5

concentrations for the four cities in our sample as an additional test on our results (see

Section 6.2.2).

4 Data

4.1 Plant-Level Data

We obtain comprehensive plant-level data on daily power generation from the National

Electricity Coordinator (Coordinador Eléctrico Nacional — CEN), the national body in

charge of SING. Along with the information on generation, the data include specifics on

plant-level technology and capacity, which we later merge with data on fuel use and prices

obtained from the National Energy Commission (Comisión Nacional de Enerǵıa — CNE).

As November 2017 was the month in which SING and SIC were first connected, our study

period goes from 2012 until 2017. Descriptive statistics for daily generation by energy source

are presented in Table 1, while fuel use and prices are in panels A and B, respectively, of

Appendix Table A1.

Table 1: Daily SING Generation (GWh) by Plant Primary Fuel Source

Energy
Obs. Mean Std. Dev. Min. Max.

Initial Year: 2012 Final Year: 2017

Source #EGUs Cap. (MW) #EGUs Cap. (MW)

Coal 2,192 39.36 3.68 17.62 49.04 13 1,959 15 2,449
Diesel 2,192 .12 .19 0 1.99 12 117 13 117
Fuel oil 1,187 0.07 0.12 0 0.63 3 36 3 36
Fuel oil #6 2,192 0.37 0.49 0 2.30 4 177 7 50
Natural gas 2,192 5.03 2.18 0 17.29 5 1,368 6 1,925
Hydro 2,192 0.21 0.03 0.07 0.33 4 16 5 17
Geothermal 306 0.21 0.20 0 0.73 - - 2 79
Wind 1,492 .84 .47 0 2.78 - - 2 200
Solar 1,918 1.46 1.60 0 6.09 1 25 18 655

Notes: This table displays the main descriptive statistics on daily power generation at Chile’s northern grid, SING, from 2012
to 2017. The information is displayed by the primary fuel source. Observations are plant-days. EGUs are electric generating
units. Capacity (cap.) is the average net capacity for the given year. All gas-fired power plants are combined-cycle (CC) plants
that also run with diesel. Data come from the National Electricity Coordinator from 2012 to 2017.

Table 1 shows that coal-fired electric generating units (EGUs) are SING’s main source

of power generation, with an average of 39.36 GWh per day, followed by gas-fired units
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with 5.03 GWh, and solar units with 1.46 GWh. This is consistent with the amount of fuel

used by these sources, as coal and gas plants report the greatest usage in Table A1. From

Table 1, we also observe that coal-fired and hydroelectric plants are always dispatching in our

sample, as revealed by the positive minimum daily generation. Furthermore, solar generation

experienced the highest growth in terms of the number of new units and capacity installed

into the system, as shown in the last four columns of Table 1.12

4.2 Health Outcomes

We use data from the Department of Health Statistics and Information (Departamento de

Estad́ısticas e Información de Salud — DEIS), part of Chile’s Ministry of Health, from 2012

to 2017. DEIS provides data on each patient that has been discharged from any hospital in

the country, together with information on their date of admission, age, and the physician’s

diagnosis of the leading cause of disease based on the International Standard Classification

(ICD-10). Although the data are compiled at the hospital or urgent care center level, they

include a variable on each patient’s city of origin. This allows us to construct a panel of

city-level daily hospital admissions, which constitutes our main health outcome. We focus

on hospital admissions due to cardiovascular (codes I00/I999) and respiratory conditions

(codes J00/J999), and, within respiratory conditions, we further examine upper and lower

respiratory infections.13 Descriptive statistics on the daily rate of hospital admissions by

admission condition are presented in panel A of Table 2 for the 19 cities in the sample.

In addition to constructing health outcomes by disease, we also compile health outcomes

across age groups using the patient’s age. In particular, we examine morbidity outcomes

across infants (< 1-year-old), toddlers (between 1-5 years old), kids (between 6-14 years

old), adults (between 15-64 years old), and seniors (65-years old or more). Descriptive

12Notice in Table 1 that the total net capacity of plants running with fuel oil #6 decreased from 177
MW in 2012 to 50 MW in 2017. This is due to the closure of two main generators, units U10 and U11,
part of Termoelectrica Tocopilla, a power plant in operation since 1960. Four generators indeed were closed
during the sample period. Although solar generation may also displace fossil fuel generation at the extensive
margin, our main analysis is conservative as it is centered around the effects of displacement at the intensive
margin only. If these shutdowns were a consequence of the injection of solar power into the system, our
estimates would thus constitute a lower bound of the true effect of solar power generation on improved
health outcomes.

13Specifically, we use codes J00/J069 and J30/J399 for upper respiratory and codes J09/J189 J20/J229
J40/J479 J60/J709 J80/J869 for lower respiratory diseases. Upper respiratory infections affect the nose
and throat, causing symptoms such as sneezing and coughing. Among the most frequent upper respiratory
infections are the common cold, sinusitis (sinus inflammation), epiglottitis (trachea inflammation), and
laryngitis (infection of the voice box). Lower respiratory infections affect the lungs and lower airways.
Common lower respiratory infections are bronchitis (bronchial tube inflammation), bronchiolitis (an infection
of the small airways, affecting children), pneumonia (a lung infection), asthma (long-term disease of the
lungs), influenza, and tuberculosis (bacterial lung infection).

14



Table 2: Summary Statistics on the Daily Rate of Hospital Admissions

Disease Mean Std. Dev. Min. Max. Obs.

Panel A. All Cities
Cardiovascular 1.044 4.848 0 409.84 41,648
All respiratory 1.204 5.636 0 409.84 41,648
Upper respiratory 0.274 2.002 0 168.35 41,648
Lower respiratory 0.787 4.363 0 319.49 41,648

Panel B. Downwind Cities ≤ 10km of Displaced Plants
Cardiovascular 2.253 3.114 0 21.75 4,384
All respiratory 2.552 4.069 0 57.92 4,384
Upper respiratory 0.482 2.550 0 57.15 4,384
Lower respiratory 1.854 2.893 0 24.13 4,384

Panel C. Downwind Cities ≤ 50km of Displaced Plants
Cardiovascular 1.818 3.002 0 21.75 6,576
All respiratory 2.029 3.707 0 57.92 6,576
Upper respiratory 0.379 2.175 0 57.15 6,576
Lower respiratory 1.478 2.737 0 24.13 6,576

Panel D. Downwind Cities ≤ 100km of Displaced Plants
Cardiovascular 1.545 3.082 0 30.13 8,768
All respiratory 1.692 3.635 0 57.92 8,768
Upper respiratory 0.314 2.009 0 57.15 8,768
Lower respiratory 1.244 2.784 0 30.18 8,768

Notes: This table displays the main descriptive statistics on the daily rate of hospital admissions (all ages) by disease from
2012 to 2017. Hospital admission rates are per 100,000 people. We separate out the sample by all cities, and then specifically
for those cities downwind of displaced thermal plants (identified in Section 6.1), at different distances. Data come from the
Ministry of Health, through the Department of Health Statistics and Information (DEIS) from 2012 to 2017.

statistics on the daily rate of hospital admissions by age group are in Appendix Table A2.

4.3 Wind Direction

Our data on wind direction come from Chile’s Meteorological Service and Air Quality

System from 2012 to 2017. The data cover four cities that host fossil fuel power plants,

namely Arica, Iquique, Tocopilla, and Antofagasta.14 The eight-wind compass roses for

these cities are displayed in Figure A3 for daytime (dashed line) and nighttime (solid line)

wind patterns for all cities except for the city of Iquique (in Figure 3(b)), for which we

14Mejillones is another city with fossil fuel power plants but no available wind data; instead, we rely on
information from the nearest available city, Antofagasta, 62 km away.
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only have nighttime wind direction. In the definition of downwind cities, we approximate

daytime wind patterns for Iquique using nighttime information. Although wind speed is

generally higher at night, we use daytime information given our focus on the daily thermal

displacement by solar energy sources. Considering that solar installations produce at peak

capacity around midday, we expect daytime wind direction patterns to be more informative

of a population’s true exposure to reduced emissions from the displacement of fossil fuel

generation during solar availability.

4.4 Other Covariates

We also obtain information on other factors potentially correlated to hospital admissions.

First, we obtain data on city-level demographic characteristics such as population, density,

poverty, and fertility rates as a proxy for socioeconomic factors known to affect health out-

comes.15 We gather this information from the National System of Municipal Information

(Sistema Nacional de Información Municipal — SINIM). The demographic data are updated

every two years, and therefore we can include these variables in our estimation regressions

jointly with city-fixed effects.

Data on weather come from two different sources. First, we gather information on maxi-

mum and minimum temperatures from the National System on Water Information (Sistema

Nacional de Información del Agua — SNIA) for several monitoring stations located in re-

mote areas in northern Chile. Although we obtain this information for almost all cities in our

dataset, there are some incomplete entries, which we replace with daily regional averages.

The second source is Solar Explorer, an initiative of the Chilean Ministry of Energy (Min-

isterio de Enerǵıa) that contains humidity data for all the cities in our sample. Descriptive

statistics for these covariates are in Panel A of Table A3 in the Appendix.

5 Methods

5.1 Displacement

We begin by econometrically identifying the effect of solar adoption on the power gener-

ation of existing power plants from 2012 to 2017.16 To that end, we categorize all the plants

in the system by their primary fuel type (e.g., coal, diesel, natural gas, fuel oil) and then

define a set of linear models of daily generation to estimate which types of plant decrease

15Unfortunately, city-level data on indicators such as unemployment and income are not publicly available.
16Our displacement analysis is a short- to medium-term analysis given that it takes SING’s infrastructure

as given during our sample period (Baker et al., 2013).
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or increase their production with the introduction of solar generation. Given our interest in

the overall effect of solar power generation on health, we use daily-level variation in power

generation to identify effects because total daily generation (and thus emissions) is more di-

rectly related to health outcomes than, say, hourly shifts. We define our baseline aggregated

generation displacement equation as follows:

Gf
d = γ0 + γ1Sd +

∑
j 6=f

δj
(
FuelUsefm ∗

P f
m

P j
m

)
+ γ2Loadd + ωd + τ + εfd , (1)

where Gf
d is the system’s generation by fuel f during day d, and ωd is a vector of daily

weather covariates. It is important to include these weather controls as renewable generation

is highly dependent on weather conditions (e.g., wind and hydro). We also include τ , a vector

of time-fixed effects, and εfd is an error term. We consider two options of τ . The first, τ1,

includes year, month, and weekend fixed effects, while a stronger version, τ2, includes year,

seasons, year × seasons, and weekend fixed effects.

Equation (1) also includes the variable Loadd that represents the system load during day

d to control for increases in demand over time, as demonstrated by Appendix Figure A4.17 In

addition, Equation (1) considers a term that models SING’s dispatch of generators to control

for differences in input prices that may affect daily dispatch conditions. This term is given by

the interaction between aggregate use of fuel f during month m, FuelUsefm, and the relative

international (exogenous) monthly prices of the fuels in the system, P f
m/P j

m, where f 6= j.

Here, one concern may be that, in the eventuality of a displacement of fuel f , FuelUsefm

may be also affected by solar generation. We test the robustness of including FuelUsefm in

specification (1) by first using fuel use in month m− 1, that is, FuelUsefm−1, and second, by

removing FuelUsefm from Equation (1). These alternative approaches result in qualitatively

similar results; see Section 6.1 for a discussion. Importantly, we do not include relative prices

with respect to solar energy or other renewables, given their zero marginal cost.

The key variable in Equation (1) is Sd, which represents the system’s total solar generation

during day d. The idea behind this is that, after controlling for plant-level (fuel use) and

system-specific covariates (prices, load), weather, and time fixed effects, residual variation

in generation by fuel f can be explained by variation in the system’s total solar power.

To ensure that any potential outcome effect is attributable to variation in solar generation,

we run an alternative specification to Equation (1) in which we replace Sd by a daily solar

capacity factor CF solar
d (defined as total daily solar generation on day d weighted by solar net

capacity on day d). Because solar comes online sporadically throughout the sample period,

17As the large-scale copper mining industry is an important agent in the demand for energy at SING,
variations in daily load should also capture similar variations in copper production.
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utilizing capacity factors instead of generation can capture the more long-run effects of solar

entry while still capturing daily variation in solar generation. In both cases, the parameter γ1

reflects whether, and to what extent, daily solar power induces a significant change in daily

generation by non-solar sources. A negative (positive) γ1 signals a solar-induced displacement

(ramp-up) of non-solar sources.

We estimate Equation (1) with an ordinary least square (OLS) estimator, bootstrapping

standard errors to account for any heterogeneity and serial correlation in the generation

data. To take into account the heterogeneous capacity across fuel types, we also estimate

an alternative specification of Equation (1) in which we replace the outcome Gf
d by capacity

factors CF f
d , defined as the total daily generation by fuel f weighted by its net capacity.

Given that CF f
d takes values between 0 and 1, we estimate this version of Equation (1) using

a generalized least-squares (GLM) estimator assuming a logit distribution.

Additionally, we run a plant-level version of Equation (1) to individually identify the set of

plants displaced by solar generation and those that are not. Later on, in our health analysis,

we use this plant-level displacement analysis as the main input to classify cities based on their

exposure and proximity to displaced plants. We modify Equation (1) to include generation

Gf
id by plant i, and plant i’s corresponding fuel use FuelUsefim, as follows:

Gf
id = γ0 + γ1Sd +

∑
j 6=f

δj
(
FuelUsefim ∗

P f
m

P j
m

)
+ γ2Loadd + ωd + τ + εfid. (2)

5.2 Solar Generation and Health

Once we have identified whether solar power generation induced a displacement of fossil-

fueled plants, our next step is to estimate the effect of solar power generation on hospital

admissions. We define our baseline health equation as follows:

Healthjd = δ0 + δ1Sd + ωjd + ζ + τ + νjd, (3)

where Healthjd represents the rate of hospital admissions (per 100,000 people) in city j

during day d; ωjd is a vector of daily city-level weather covariates that may affect morbidity

outcomes such as daily maximum and minimum temperatures and humidity; ζ is a vector

of city-fixed effects (or city × year fixed effects); τ is a vector of time-fixed effects, and

νjd is an idiosyncratic effect. Unlike Equation (1), here we use the strongest specification of

time-fixed effects, which includes year, seasons, year × seasons, and weekends (that is, vector

τ2). Including time-fixed effects, year × seasons fixed effects, or year × city fixed effects is

important to take into account potential improvements in fossil fuel plants’ emissions factors

that could have taken place over time and confound the effect of interest.
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The main variable in Equation (3) is Sd, which measures SING’s total solar generation on

day d. Given the specification of Equation (3), we leverage daily within-quarter variation in

total solar generation to identify health effects. Because we construct this variable utilizing

generation from all solar plants in the system, daily variation in S is exogenous to any day-

to-day variation in hospital admissions in a given city j, and thus, our parameter of interest,

δ1, gives us an unbiased marginal effect of daily solar generation on the daily rate of hospital

admissions. We estimate Equation (3) with an OLS estimator. However, given that we

have a large number of zeros in the outcomes (count variables) and a clear overdispersion of

these outcomes across cities in our sample, we check the robustness of this estimator with

alternative count regression models in Section 7.18

There are potential drawbacks in the estimation of Equation (3). First, fossil fuel plants

may not be randomly placed across the region, so cities with and without fossil fuel plants

may be observably different. Indeed, this is the case exhibited in panels B and C of Appendix

Table A3, which show that cities without fossil fuel plants (panel C) are smaller, less dense,

and with higher poverty rates than those with fossil fuel plants (panel B) (all of these

differences are statistically significant).19 Thus, in addition to including city-fixed effects,

we also control for time-varying (biennial) demographic characteristics (e.g., population,

poverty rate, density, fertility rate) in the estimation of Equation (3). Second, large copper

mines are important energy consumers in northern Chile, and also a significant air pollution

emitter. For this reason, we also include monthly large-scale copper production by city in

the estimation of Equation (3).20 Third, there may be substantive dynamic effects of daily

avoided fossil-fueled pollution on health outcomes. As air pollution gathers and accumulates

in the atmosphere over time, we would expect to see a lagged impact of daily improvements

in air quality on health.21 In particular, air quality improvements over three or four days may

very well lead to more significant health benefits today than contemporaneous improvements

in air quality. In that case, Equation (3) would give us an incomplete picture of the actual

health effect of a cleaner grid.

There is precedent in the literature for testing the effect of lagged exposure to air pollution

on health. For instance, Neidell (2009) includes up to six days of lags (with only four days

of lags in their preferred specification), while Schlenker and Walker (2016) opt for three

18See Appendix Figure A5 for an example of overdispersion and the pile-up-at-zero in our data.
19Statistical tests are omitted for simplicity.
20Large-scale copper mining operations roughly represent 96% of the industry’s total production. We

obtain monthly large-scale copper production from the Chilean Copper Corporation (COCHILCO). We
would much rather use data on daily variation in production, but this information is unavailable.

21Indeed, there is evidence that certain air pollutants can have an extended effect on health. For instance,
U.S. Environmental Protection Agency (2006) find ozone can have an effect on health for up to four days
after exposure.
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days of lags. Although these two studies are looking at degradation of air quality while

we look at improvements in air quality, we could potentially identify a dynamic effect by

including lags in our health equation. However, this is not straightforward in our setting

because our variable of interest (solar generation) is highly colinear across days.22 Thus,

including lags and leads would result in unstable estimates due to the multicollinearity of

the variables. Instead, we take a slightly different approach by testing whether there is a

cumulative impact of longer-term solar generation (and thus, longer periods of exposure to

reduced fossil fuel-related pollution) on health. We do this by estimating the impact of

average weekly, monthly, and yearly solar generation on health outcomes, as depicted by

Equation (4) where T = {7, 30, 365}. Expressed in this way, δ1T approximates the average

weekly, monthly, or yearly effect of solar generation on daily hospital admissions:

Healthjd = δ0 + δ1TT
−1

T∑
t=1

Sd−t + ωjd + ζ + τ + νjd. (4)

5.2.1 Identifying Assumptions

The validity of our empirical specifications in Equations (1), (2), (3), and (4) relies

on, first, the identifying assumption that large-scale investments in solar power generation

are exogenous to day-to-day variation in fossil-fuel generation once we control for plant-

level characteristics, daily load, demographics, and time fixed-effects. This is a reasonable

assumption given the massive large-scale investments in renewables were encouraged by the

ERNC policy, which we use as a natural experiment (see Section 3.1). In this case, the total

variation in solar generation in SING is as good as randomly assigned.

One concern to identification is the possibility that day-to-day variation in solar genera-

tion may be insufficient to identify any health effects. This concern could be amplified with

the inclusion of year × season fixed effects in our health estimation equation, as we may

be soaking up the variation in solar generation over time. To rule out this concern, Figure

5 illustrates significant across- and within-quarter variation in solar generation (black dots)

over time. Two main reasons explain these variations. First, as mentioned before, there is

increasing solar capacity (gray bars) over time in our setting. Second, solar plants generally

operate with reduced capacity due to the intermittent nature of the sun over the course of

the day. In our sample, average solar capacity factor is 19.67%, and maximum capacity

is 42% (see Appendix Figure A6). Thus, using solar generation provides us with sufficient

variation over time to be able to accurately identify its effect on health. In any case, we also

22Our multicollinearity tests between Solard and Solard−l for l = {1, 2, 3} reveal variance inflation factors
(VIFs) of magnitudes close to a 100.
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estimate Equation (3) using CF solar
d instead of Sd for added robustness.
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Solar Capacity Daily Solar Generation Within Quarter

Figure 5: Within-Quarter Solar Capacity and Daily Solar Generation Over Time

Notes: The figure shows variation in solar generation and solar capacity within quarters. Bars show accumulated solar net
capacity (in MW) within quarters. Dots indicate the daily average solar generation (in GW) within quarters. Data come from
the National Electricity Coordinator from 2012 to 2017.

An additional concern is a potential endogeneity between power generation and health

outcomes. For instance, power plant locations can be correlated with local income, as local

employment and wages may be associated with power plant output. At the same time, higher

(lower) wages can correlate with better (worse) health outcomes, and thus, identification of

the main parameters in our health equations may be threatened. We argue that, by using

system-level daily solar generation, we can avoid any localized endogeneity concerns as solar

generators are scattered across the entire SING system and far from demand centers (see

Figure A7) instead of being concentrated in certain cities as in the case of thermal generation.

However, to guarantee identification, we pair information on average city-level wind di-

rection (see Figure A3) with the results from our plant-level displacement analysis, which

allows us to distinguish cities downwind of displaced fossil fuel plants.23 To the extent that

large-scale daily solar generation displaces thermal generation, the reduction in emissions

from these displaced thermal plants is likely to benefit cities that are located downwind of

these units.24 Additionally, we identify cities upwind of displaced plants and downwind of

23We obtain the average wind direction by drawing a pie slice with an angle of π/4 radians (i.e. 45 degrees)
bisected by the average daytime wind direction in each location. The resulting average wind direction is:
1.15π radians (206.9 degrees) in Arica (Figure 3(a)), 1.57π radians (282.7 degrees) in Iquique (Figure 3(b)),
1.33π radians (238.6 degrees) in Tocopilla (Figure 3(c)) and 1.09π radians (196 degrees) in Antofagasta
(Figure 3(d)).

24In classifying downwind cities, we acknowledge the simplicity of our approach when it comes to un-
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non-displaced plants to use later in a robustness analysis. We enrich this wind analysis with

the calculation of distances to the displaced thermal plants and construct an indicator for

whether a city is downwind of and near a displaced plant. Thus, when estimating our health

equations for all cities, we also do so for cities downwind of displaced fossil fuel plants that

are located within 10km, 50km, or 100km of their boundaries. In doing so, we rely on the

identifying assumption that harmful effects of pollution are stronger downwind of and closer

to displaced thermal plants.

6 Results

6.1 Fossil Fuel Displacement

Panel A of Table 3 (Appendix Table A5) presents the results of estimating Equation

(1) on the effect of 1-GWh of daily solar generation (Solard) on daily aggregated generation

(panel A) and on daily capacity factors (panel B) of fossil fuels (renewable sources). To

verify that any finding is attributable to more solar plants coming online, we also include the

results of the effect of a 1-percentage-point (pp) increase in solar capacity factor (Solar Cap

Factord) on the same outcomes; thus, each row in Table 3 represents a different regression.

Columns labeled (2) include more time-fixed effects than columns labeled (1); further results

follow a similar format.

Our findings in Table 3 (and Appendix Table A5, which estimates the displacement

of renewables by solar) show that solar-generated electricity displaces other fuel sources,

particularly dirty sources. We observe that an extra 1-GWh of daily solar generation reduces

the day-to-day generation of plants running with coal and with natural gas by 0.48 and 0.27

GWh, respectively (panel A, columns (2)).25 Considering the descriptive statistics in Table

1, we observe that this displacement is roughly equivalent to 1.22% and 5.36% of the daily

average electricity generated by these fossil fuels. Qualitatively similar effects are found in

panel B on capacity factors of thermal plants. An extra 1-GWh of solar generation displaces

in 1.4 percentage points capacity factors of coal-fired plants and in 4.9 percentage points

capacity factors of gas-fired plants. The results in Table 3 also suggest a ramp-up in capacity

factors of plants running with diesel. However, this effect disappears once a stronger set of

time-fixed effects is included.

derstanding how pollution travels over space. However, and to the best of our knowledge, more complex
air transport models have not been developed or made public for Chile. This fact reduces our ability to
incorporate issues such as the impact of mountain ranges on wind, or wind directions that may change across
longer ranges.

25Further analysis using simple cycle turbine plants reveals that solar energy displaces coal-fired single-fuel
engine generation at a larger magnitude (see Table A6 in the Appendix).
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Table 3: The Effect of Daily Solar Energy on Daily Aggregated Fossil Fuel Generation

Coal Diesel Fuel oil Fuel oil #6 Natural gas

(1) (2) (1) (2) (1) (2) (1) (2) (1) (2)

Panel A. Generation (GWh)
Solar Gend -0.656∗∗∗ -0.483∗∗ 0.151 0.077 -0.011 -0.013 -0.016 -0.014 -0.215 -0.274∗∗

(0.175) (0.159) (0.094) (0.092) (0.019) (0.024) (0.017) (0.013) (0.150) (0.134)
Solar Cap Factord -0.041∗∗ -0.066∗∗∗ -0.003 -0.007 -0.0003 -0.0005 -0.002 -0.002 0.006 -0.015

(0.015) (0.013) (0.007) (0.012) (0.001) (0.001) (0.001) (0.002) (0.009) (0.010)
Panel B. Capacity Factor

Solar Gend -0.021∗∗∗ -0.014∗∗∗ 0.015∗∗ 0.012 0.047 0.018 -0.018 -0.006 -0.063∗∗∗ -0.049∗∗∗

(0.003) (0.003) (0.006) (0.007) (0.041) (0.064) (0.012) (0.011) (0.009) (0.009)
Solar Cap Factord -0.001∗∗∗ -0.002∗∗∗ 0.0005 -0.0001 0.001 -0.0003 -0.001 -0.002∗ -0.003∗∗∗ -0.001∗∗

(0.0003) (0.0003) (0.0005) (0.0004) (0.001) (0.001) (0.001) (0.001) (0.001) (0.0005)

Obs. 1,915 1,915 1,915 1,915 910 910 1,915 1,915 1,915 1,915
Controls X X X X X X X X X X
τ1 fixed effects X X X X X
τ2 fixed effects X X X X X

Notes: This table displays estimation results from regressions of daily aggregated fossil fuels’ generation (panel A) and fossil
fuels’ daily capacity factors (panel B) on daily solar power generation and daily solar capacity factors. Each row is a separate
regression. Solar generation is in GWh. Solar capacity factor is between 0 and 100. Estimation results are marginal effects
from an OLS (daily aggregated generation), and from a fractional logit response model (daily capacity factors). All estimations
include plants with both single- and dual-fuel engines. All regressions include daily temperature, humidity, load, and price ratios
as controls. Vector τ1 includes year, month, and weekend fixed effects. Vector τ2 includes year, seasons, year × seasons, and
weekend fixed effects. Bootstrapped standard errors using 50 repetitions appear in parentheses. Significance levels: ∗p < 0.10,
∗∗p < 0.05, ∗∗∗p < 0.001.

This solar-induced displacement of fossil fuel sources, particularly coal, is corroborated by

the use of daily solar capacity factor instead of solar generation. These results in panel A show

as more solar comes online (leading to an increase in solar capacity factor), coal generation

is displaced. In particular, a 1-pp increase in solar capacity factor reduces daily coal-fired

generation by .066 GWh, equivalent to a .16% decrease relative to the daily average coal

power generation. Smaller estimated marginal effects attributable to solar capacity factor

are not surprising because a 1-pp increase in daily average solar capacity factor is equivalent

to a 0.062-GWh increase in daily solar generation. We also observe a reduction in other fuels,

yet, we lose precision in estimating this displacement. For robustness checks, we first replace

FuelUsefm with lagged fuel consumption by using FuelUsefm−1, and then we completely

remove FuelUse from the estimation of our displacement equation (see Appendix Table

A4), mostly for coal displacement. In the latter case, when FuelUsefm is removed from

the displacement specification, our findings reveal a stronger coal displacement, meaning

that a 1-GWh extra of solar generation goes almost exclusively to displacing coal power

generation. Relative to this result, we consider our baseline displacement estimates in Table

6.1 as conservative estimates.

The thermal displacement due to additional solar energy is also found in hydro, a dis-

patchable power source (Appendix Table A5). The result in column (2) (panel A) indicates
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that, on average, a 1-GWh increase in daily solar generation displaces 0.007 GWh of hydro

generation (equivalent to 3.3% of the average hydropower generated in a single day) and hy-

dro capacity by 1.8%. Similarly, a 1-pp increase in solar capacity reduces hydro generation

by .03 GWh and hydro capacity by .1%. An analogous effect is found on daily geothermal

generation (column (1)), although the statistical significance of this effect disappears when

stronger fixed effects are used. The results on geothermal capacity factors are stronger and

statistically significant, demonstrating a reduction of 4 pp from increases in solar generation,

and a reduction of 0.6 pp from increases in solar capacity.

It is important to note that geothermal displacement attenuates the potential benefits

of a reduction in fossil fuels found in Table 3. Because geothermal energy is a non-emitting

source of electricity, its displacement reduces some of the health benefits associated with

the expansion of solar generation. Hydropower, on the other hand, is mostly utilized as a

storage resource, dispatching in response to high price times; thus, we are unable to directly

identify the environmental impacts of its displacement. Despite this potential attenuation,

this effect is smaller in magnitude compared to the displacement of daily coal generation.

Moreover, this effect is likely to be minor given the relatively small share of electricity that

is produced by hydro and geothermal sources (both of which contribute only 0.4% of mean

daily generation; see Table 1). In summary, we expect any attenuation effect from reduced

hydro and geothermal generation to be small compared to the benefits of displaced coal and

natural gas, which account for 83% and 11% of mean daily generation, respectively.

Finally, we find a positive coefficient of solar generation on wind generation, a non-

dispatchable (but curtailable) power source. The result for wind in column (2) of Appendix

Table A5 indicates that 1-GWh of daily solar generation ramps up wind generation by

0.099 GWh and that a 1-pp increase in solar capacity increases wind generation by .7 GWh.

Similarly, an increase in solar generation and capacity results in a 1.3% and .2%, respectively,

increase in wind capacity. Due to the non-dispatchability of wind generation, this likely

reflects an underlying correlation between wind and solar, given the thermally driven wind

systems that characterize the Atacama Desert (Jacques-Coper et al., 2015).26 An additional

source of positive correlation between wind and solar generation likely come from the ERNC

policy itself, which boosts the adoption of renewable energy sources, mostly solar and wind

energy. In any case, given that wind generation is not dispatchable but curtailable, the fact

that we are not getting a negative coefficient weakly suggests that wind is not curtailed

in response to greater solar output, or that, if curtailment exists, it is not large enough to

26Thermally driven winds are caused by local differences in radiational heating and cooling systems, which
in the case of the Atacama favor the complementarity between wind energy and solar energy (Jacques-Coper
et al., 2015; Muñoz et al., 2018).
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overcome the positive correlation between the two sources.

Figure 6: The Effect of Daily Solar Energy on Coal Combustion by Generation Units

Notes: The figure shows estimation results from regressions of daily coal-fired generation (squares) and coal capacity factors
(circles) on daily solar power generation at the electricity generation unit (EGU) level. Point estimates are marginal effects
of daily solar generation (in GWh) derived from an OLS regression on daily aggregated generation (left y-axis), and from a
fractional logit response model on daily capacity factors (right y-axis). The estimation equations are identical to the ones in
columns (2) of Table 3. Dashed lines represent 95% confidence intervals obtained with bootstrapped standard errors using 50
repetitions. The reference line in red is at the zero mark. All estimations use EGUs that report coal (and its derivatives) as
their primary fuel source.

To delve deeper into the fossil fuel displacement found in Table 3, we estimate Equation

(2) at the plant level to individually identify affected plants. We plot the marginal effects

of solar generation on daily generation levels and capacity factors by coal-fired EGUs in

Figure 6.27 Squares represent point estimates of solar generation on daily coal generation

(left y-axis), and circles represent marginal displacements of capacity factors (right y-axis).

The negative impact of solar generation on coal combustion indicated in Table 3 is mostly

explained by the shift in the generation of six units: U13 (statistically significant at the 10%

level), U15, U14, U12, CCR2, and CTA. Indeed, CTA is the unit with the higher estimated

displacement. In fact, considering this plant alone, solar-induced displacement translates

into more than 200 MWh of avoided daily coal-fired generation. On average, our estimates

reveal that a 1-GWh of solar generation displaces 203 MWh of generation from this particular

unit on a given day.

In addition to the displacement of several coal-fired units, Figure 6 also reveals a statis-

tically significant ramp-up in coal generation of two facilities: NTO1 and NTO2, located in

the city of Tocopilla. On average, 1-GWh of daily solar generation increases their generation

27Similar graphs for diesel- and gas-fired units are in Appendix Figures A8 and A9, respectively.
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by 90 and 89 MWh, respectively, jointly equivalent to 0.46% of the daily coal-fired generation

(see Table 1). Although the generation ramp-up of these two coal-fired units is significantly

lower than the displacement of other facilities, the increase slightly attenuates the potential

health impact of the overall set of displaced plants in Tocopilla. Later in the paper, we use

the proximity of cities to ramped-up plants as a robustness check of our results.

6.2 Solar Generation and Health Outcomes

The results on the effect of additional solar energy on the rate of daily hospital admis-

sions using Equation (3) are displayed in Table 4 for cardiovascular (panel A) and respiratory

(panel B) conditions, including the detail between upper (panel C) and lower (panel D) respi-

ratory diseases. Each row of the table represents marginal effects from different regressions;

in these, we either use daily solar generation or daily solar capacity factor as the main re-

gressor. Furthermore, we also subset our results based on alternative sets of downwind cities

as defined in Section 5. Column (1) presents the results of our regressions without controls.

We then include controls in Columns (2) and (3) to capture time variation (year, seasons,

year × seasons, and weekend fixed effects), weather conditions, and city-level demographics

and mining production. In addition, columns (2) include city fixed effects, while columns

(3) include city × year fixed effects. Because this final set of fixed effects is the most robust,

it represents our preferred specification.

Altogether, the results in Table 4 indicate that solar generation leads to a reduction in

hospital admissions. The results for our preferred specification (columns (3)) show that,

across all cities, a 1-GWh increase in solar generation leads to an 11.4 percentage point

(pp) reduction in the daily rate of hospital admissions due to all respiratory conditions

(panel B), with the majority of this reduction coming from lower respiratory hospitalizations

(roughly 8.5 pp). Considering the sample average of admissions, these effects are equivalent

to a 9.38% reduction in daily hospital admissions due to all respiratory diseases, and to a

10.80% reduction of admissions due to lower respiratory diseases. Results for cardiovascular

(panel A) and upper respiratory (panel C) hospitalizations are also negative but statistically

insignificant at the conventional levels. Equivalent - albeit smaller, given the differences in

magnitudes between capacity and generation- results are found when leveraging variation in

daily solar capacity factors.

Though the results in the first three columns of Table 4 have the expected sign, they could

be underestimating the true health effect of solar power generation if emissions from displaced

fossil fuel plants are not equally distributed across space. Thus, to better capture the air

quality effect of the solar-induced displacement of dirty plants, we redefine our sample to
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Table 4: The Effect of Daily Solar Energy on the Daily Rate of Hospital Admissions

All Downwind of Displaced Units

Cities < 10km < 50km < 100km

(1) (2) (3) (2) (3) (2) (3) (2) (3)

Panel A. Cardiovascular
Solard 0.008 -0.003 0.0003 -0.038 -0.039 -0.035 -0.036 -0.020 -0.017

(0.025) (0.065) (0.049) (0.085) (0.070) (0.085) (0.074) (0.068) (0.059)
Solar Cap Factord -0.001 -0.002 -0.002 -0.005 -0.005 -0.007 -0.006 -0.009∗ -0.009

(0.002) (0.003) (0.003) (0.008) (0.007) (0.005) (0.005) (0.005) (0.006)
Panel B. All Respiratory

Solard -0.057∗∗∗ -0.115∗∗ -0.114∗∗ -0.324∗∗ -0.325∗∗ -0.184∗∗ -0.188∗∗ -0.253∗∗ -0.251∗∗

(0.016) (0.057) (0.054) (0.138) (0.099) (0.083) (0.089) (0.080) (0.079)
Solar Cap Factord -0.007∗∗ -0.010∗∗ -0.010∗∗ -0.022∗∗ -0.022∗∗ -0.010 -0.010 -0.013∗ -0.0136∗∗

(0.002) (0.005) (0.005) (0.010) (0.009) (0.007) (0.007) (0.007) (0.007)
Panel C. Upper Respiratory

Solard -0.019∗∗∗ -0.027 -0.027 -0.080 -0.080 -0.044 -0.046 -0.053 -0.054
(0.006) (0.017) (0.018) (0.081) (0.099) (0.069) (0.054) (0.051) (0.048)

Solar Cap Factord -0.001 -0.001 -0.001 -0.003 -0.003 -0.001 -0.001 -0.002 -0.002
(0.001) (0.002) (0.002) (0.005) (0.005) (0.004) (0.004) (0.003) (0.003)

Panel D. Lower Respiratory
Solard -0.025∗ -0.085 -0.085∗ -0.263∗∗ -0.263∗∗ -0.152∗∗ -0.151∗∗ -0.193∗∗ -0.190∗∗

(0.013) (0.054) (0.048) (0.101) (0.085) (0.064) (0.074) (0.061) (0.063)
Solar Cap Factord -0.004∗∗ -0.009∗∗ -0.009∗∗ -0.021∗∗ -0.021∗∗∗ -0.010∗ -0.010∗∗ -0.011∗∗ -0.011∗∗

(0.002) (0.004) (0.004) (0.008) (0.006) (0.006) (0.005) (0.004) (0.005)

Observations 36442 36385 36385 3830 3830 5745 5745 7660 7660
Number of cities 19 19 19 2 2 3 3 4 4
Sample Mean Y - Panel A 1.043 1.043 1.043 2.244 2.244 1.822 1.822 1.565 1.565
Sample Mean Y - Panel B 1.215 1.216 1.216 2.522 2.522 2.013 2.013 1.699 1.699
Sample Mean Y - Panel C 0.279 0.279 0.279 0.484 0.484 0.378 0.378 0.317 0.317
Sample Mean Y - Panel D 0.789 0.789 0.789 1.817 1.817 1.458 1.458 1.244 1.244

Controls X X X X X X X X
City fixed effects X X X X
City × year fixed effects X X X X

Notes: This table displays estimation results from OLS regressions of daily hospital admissions on daily solar power generation
or daily solar capacity factor. Each row is a separated regression. Solar generation is in GWh. Solar capacity factor is between
0 and 100. Daily hospital admissions are per 100,000 people. Controls include weather, mining production, and demographic
covariates. All regressions include controls, year, seasons, year × seasons, and weekend fixed effects. Bootstrapped standard
errors using 50 repetitions appear in parentheses. Significance levels: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.001.

include cities located downwind of and at different distances from displaced fossil fuel plants

identified in Section 6.1. These are the results in the last six columns of Table 4.

We obtain stronger and larger health effects when we incorporate wind exposure to air

pollution from dirty, displaced plants. This is particularly true for the rate of admissions

due to respiratory conditions near displaced plants (< 10km), although the coefficients on

cardiovascular conditions continue to lack statistical significance. For cities within 10km

downwind of displaced plants, the results in column (2) indicate that a 1-GWh increase

in daily solar generation results in a 32.5 pp reduction in the rate of hospital admissions

due to respiratory diseases in general, and in a 26.3 pp reduction in admissions due to

lower respiratory diseases in particular. These effects correspond to a 12.9% and a 14.5%
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daily reduction in each case. The signs and statistical significance of the estimated effects

are slightly similar for cities within 50km and within 100km of distance from the displaced

facilities, albeit with decreasing magnitudes. For instance, the 14.5% reduction in admissions

due to all respiratory diseases found within 10km of displaced thermal plants decreases

roughly to a 10% within 50km and to 11% within 100km. The decay between the first group

of cities is fairly consistent with the identifying assumption that the health benefits from

thermal generation displacement decrease with distance from the displaced sources. Yet,

this is not the case as we move from within-50km cities to within-100km cities. When we

move between the first and second group of cities, we add a city that is small in terms of

population, and likely attenuates the effect towards zero in the second group. We test and

confirm this hypothesis in Section 7 by running alternative (count) estimation methods that

take this possibility into account. In any event, the results in Table 4 suggest that solar

power generation leads to better health outcomes, particularly in the immediate vicinity of

displaced thermal plants, likely attributable to improvements in local air quality (a result

we are able to demonstrate more directly in Section 6.2.2).

Health Effects Across Age Groups. Figure 7 illustrates the results of estimating Equa-

tion (3) across different age groups using our preferred specification. Full estimation results

are given in Appendix Tables A7, A8, A9, A10, and A11, for infants, toddlers, kids, adults,

and seniors, respectively. Similar to our baseline results, we also include the results of re-

placing daily solar generation with daily solar capacity factor for added robustness.

The results in Figure 7 show additional solar power generation leads to health benefits

among infants and toddlers, some of the most vulnerable age groups. Figure 7(b) indicates a

clear reduction in respiratory-related hospital admissions of infants and toddlers, especially

in cities downwind of displaced dirty power plants. In particular, our exercise reveals strong

and statistically significant reductions in admissions of infants and toddlers into hospitals

due to lower respiratory diseases (see Figure 7(d)), which are equivalent to a 30.63% and

a 27.58% decrease, respectively, relative to the daily rate of admissions in downwind cities

within 10km of distance from displaced plants.28 These reductions are maintained as we

move farther away from curtailed thermal plants, although they decrease in magnitude.

Reductions in lower respiratory-related hospital admissions vary between 14.99%-19.11%

in the case of infants and between 16.17%-24.89% in the case of toddlers from downwind

cities within 50km and 100km. We also observe a reduction in respiratory-related hospital

admissions among adults and seniors, but these are weak effects and are estimated with

28Percentage reductions are 0.081/0.264 = 30.63% for infants, and 0.084/0.305 = 27.58% for toddlers. See
Appendix Tables A7 and A8.
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Figure 7: The Effect of Daily Solar Energy on the Daily Rate of Hospital Admissions by Age
Group

Notes: This figure plots estimation results from OLS regressions of daily hospital admissions on daily solar power generation
by age group. Solar generation is in GWh. Daily hospital admissions are per 100,000 people. All regressions include controls
(weather, mining production, and demographics), year, seasons, year × seasons, and weekend fixed effects. Dashed lines are
95% confidence intervals obtained with bootstrapped standard errors using 50 repetitions.

less precision. In any case, the results obtained for all respiratory diseases, mainly lower

respiratory diseases, confirm the health benefits of increased solar power generation among

vulnerable groups such as infants and toddlers, which become stronger in cities downwind

of and in close proximity to displaced thermal plants.

Short- Versus Long-Term Health Effects. The results in Table 4 and Figure 7 both

offer a general perspective of the net effect that day-to-day variation in solar generation

has on day-to-day variation in hospital admissions, suggesting the existence of short-term

benefits of additional solar generation on health. Additional evidence of the immediate co-

benefit of solar is found in the results for infants in Figure 7 and Appendix Table A7. As
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stated in Currie and Neidell (2005), the link between cause and effect is immediate in the

case of infants, whereas diseases today in adults, for instance, may reflect pollution exposure

from years ago. The negative effects of solar on respiratory-related hospital admissions of

infants, particularly lower respiratory diseases, found in panels D of Figure 7 illustrate this

immediate link. Considering that infants are less than one year old, these findings corroborate

the contemporaneous feature of the co-benefits of solar power generation.
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Figure 8: The Long-Term Effect of Solar Energy on the Daily Rate of Hospital Admissions

Notes: This figure shows estimation results from OLS regressions of daily hospital admissions on weekly, monthly, and yearly
average solar power generation across groups of cities. Solar generation is in GWh. Daily hospital admissions are per 100,000
people. Controls include weather, mining production, and demographic covariates. All regressions include controls, year,
seasons, year × seasons, and weekend fixed effects. Dashed lines are 95% confidence intervals obtained by bootstrapping
standard errors using 50 repetitions.

As an additional test on whether these co-benefits are masking some longer-run effects, we

estimate Equation (4) where the main explanatory variable is allowed to reflect the moving

weekly, monthly, or yearly average solar generation in the system. Equation (4) also allows

taking into account the potential lagged effects of solar generation on contemporaneous

health outcomes, albeit indirectly. To that end, we replace Sd by St, where t = {w,m, y}.
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Modeled in this way, δt gives us the average marginal effect of 1 GWh of either weekly,

monthly, or yearly average solar generation on the rate of daily relevant hospitalizations.

The results using our strongest specification are displayed in Figure 8 for solar generation

(see Appendix Figure A10 for solar capacity factor), with point estimates and corresponding

standard errors shown in Appendix Table A12.

The results using long-term variation in solar power in Figure 8 (see Appendix Table

A12 for point estimates) show reductions in hospitalizations due to respiratory diseases

attributable to weekly average variation in solar generation, across all cities and cities down-

wind of displaced power plants. Similar effects are found when leveraging variation in solar

capacity factor in Appendix Figure A10. These benefits, however, become smaller and gen-

erally less significant as we move toward longer times of exposure (monthly and yearly). We

take these estimates together with our previous results among infants as compelling evidence

of the immediate respiratory-related health effects of increased solar power generation.

Interestingly, the exercise in Figure 8 reveals weakly significant reductions in hospital

admissions due to cardiovascular diseases that show an opposite pattern relative to respi-

ratory diseases. These findings turn statistically significant when using capacity factors in

Appendix Table A12. This time, the health benefits from increased solar generation (and

the displacement of dirty generation) exhibit a long-term pattern when it comes to cardio-

vascular diseases, which likely originated from extended exposure to reduced air pollution.29

We also find that these long-term cardiovascular health benefits are significant regardless of

how we measure solar power (generation or capacity factor), are mostly present in downwind

cities, and they decrease with distance as we move farther away from the pollution source;

thus further supporting our identification strategy.

6.2.1 Solar-Induced Predicted Fossil Fuel Displacement and Health

Thus far, our results show reductions in hospital admissions due to daily increasing

variation in solar generation. We link both the displacement and the health analyses using

distances to displaced, dirty plants and wind direction, to pose that the curtailing of fossil

fuel power generation, as a response to frequent and increasing injections of solar generation

to the system, is likely driving the results.

In this section, we offer an additional test to this hypothesis based on predicted gen-

eration displacement, Ĝf
d from Equation (1). Using the estimated marginal effect of daily

solar generation on daily aggregated fossil fuel generation, β̂1, and assuming a marginal

29This result is supported by epidemiological evidence that cardiovascular illnesses due to air pollution are
exacerbated more from longer-term (i.e., years) exposure than from shorter-term exposure (see, for example,
Newby et al. (2015) and Brook et al. (2010))
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effect that is constant over the magnitude of daily generation, we predict the daily fossil

fuel displacement in the system that comes exclusively from variation in solar power gen-

eration. Next, we re-estimate our health analysis using predicted displacement Ĝf
d , instead

of Sd in Equation (3), for all cities and cities downwind of displaced plants, respectively.30

For simplicity, we predict displacement using only coal-fired generation as this is the main

displaced fossil fuel identified in Section 6.1. To avoid predicted daily displacement being

a mere linear combination of daily solar generation, we re-estimate Equations (1) and (2)

allowing for heterogeneous effects by year. Thus, our predicted displacement variables, Ĝf
dt

and Ĝdisp plants
dt , are calculated as follow:

Aggregated (All Cities) Displacement = Ĝf
dt = β̂1t × Sdt, (5)

Displacement in Downwind Cities = Ĝdisp plants
dt = γ̂1t × Sdt, (6)

where t = {2012, ...2017}, β̂1t is the estimated marginal effect of Sd on daily aggregated

generation by fuel f on year t, and γ̂1t is the estimated marginal effect of Sd on aggregated

generation by displaced plants on year t. Because the variables Ĝf
dt and Ĝdisp plants

dt come from

a first-step estimation process, we bootstrap this analysis using 500 replications. Appendix

Table A13 illustrates the estimated marginal effect of solar-induced predicted fossil fuel

displacement of dirty generation on morbidity.

The estimated health benefits from solar-induced predicted displacement are consistent

with our baseline health results for lower respiratory diseases, especially across downwind

cities. Because in this exercise we include as the regressor the full amount of fossil fuel

displacement, we obtain effects that are larger in magnitude relative to the findings in Table

2. Yet, the sign and statistical significance of these effects remain. Though we obtain negative

estimates for all respiratory diseases, they are less precise. The consistency of the results

for lower respiratory diseases relative to our baseline health estimates strongly supports our

findings of health benefits from daily solar power generation.

6.2.2 PM2.5, Solar Generation, and Health

Our previous results systematically indicate significant reductions in air pollution-related

hospitalizations due to fossil fuel displacement as a response to increased solar power gen-

eration, mostly in cities downwind of displaced fossil fuel plants. While this strategy helps

us to incorporate the air transport of pollutants emitted by the displaced thermal plants, it

30Because downwind cities are defined as such based on proximity from and location of displaced fossil fuel
plants, we estimate an average displacement coefficient for these cities using variation coming from previously
identified displaced plants.
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constitutes an indirect test of the mechanism through which solar generation affects health.

In this section, we employ a more direct test on the channel through which solar power

generation decreases pollution-related morbidity by using available data on PM2.5 concen-

trations. As mentioned in Section 3.2, station-based pollution data in Chile is scarce outside

Santiago. However, we gathered publicly available daily PM2.5 records for some of the cities

hosting fossil fuel plants, some of which are downwind of these plants’ emissions.31

With these data, we first re-estimate our baseline health equations but replace solar

generation with city-level daily average PM2.5 concentrations. We do so to estimate the

direct effect of pollution concentrations on our morbidity outcomes. In doing this, we have

to consider the role of omitted variables. For instance, PM2.5 can be formed due to chemical

reactions of secondary particles from SO2 and NOX , pollutants that not only are common

to coal combustion but also have a direct impact on health (World Health Organization,

2006). In addition, other factors such as economic conditions may have a simultaneous

impact on both health outcomes and air pollution concentrations. Thus, while informative,

this regression may give us an inconsistent estimator of the air pollution impact on health.

To address this, we also include a specification in which we use day-to-day variation in solar

generation or capacity factor as two different instruments for PM2.5. Table 5 presents the

results from these regressions, including first-stage results from regressing daily PM2.5 on

daily solar power or daily solar capacity factor. Our initial OLS regression is presented

in columns (1) for all cities and downwind cities within 10km. In columns (2) and (3),

we present results from an instrumental-variables (IV) approach using a Two-Stage Least

Square (2SLS) estimator.

The results in column (1) of Table 5 indicate PM2.5 concentrations increase morbidity,

particularly those associated with respiratory diseases. We also find a positive effect on

cardiovascular outcomes, but they are very small and not statistically significant at the con-

ventional levels. These findings support our results related to the direct impact of solar

on health, namely, more solar power and less fossil fuel generation reduce emissions and in

turn, hospitalizations. Furthermore, the fact that we do not find a direct effect of pollution

on cardiovascular hospitalizations explains our lack of significance on cardiovascular hospi-

talizations in our baseline health analysis. Instrumenting for PM2.5 in columns (2) and (3)

results in significantly larger coefficients, suggesting a downward bias of the OLS estimates

in column (1). At the same time, these larger-in-magnitude estimates signal that the use

31Specifically, we have data for Arica (2013-2017), Antofagasta (2013-2017), Tocopilla (2012-2017) and
Alto Hospicio (2016-2017). The last two cities, namely Tocopilla and Alto Hospicio, are part of the group of
downwind cities within 10km of displaced fossil fuel plants. Data are daily records averaged across stations
and come from the National Air Quality Information System (SINCA)’s website, https://sinca.mma.gob.
cl. Descriptive statistics for this variable are in Appendix Table A14.
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Table 5: The Effect of Solar-Induced Changes in PM2.5 on the Daily Rate of Hospital Ad-
missions

All Cities < 10km Downwind of
Cities Displaced Fossil Fuel Plants

OLS IV using Sd IV using CF solar
d OLS IV using Sd IV using CF solar

d

(1) (2) (3) (1) (2) (3)

Panel A. Cardiovascular
PM2.5 0.0002 -0.012 0.030 -0.002 0.029 0.038

(0.007) (0.053) (0.044) (0.013) (0.071) (0.059)
Panel B. All Respiratory

PM2.5 0.038∗∗∗ 0.193∗∗∗ 0.158∗∗ 0.045∗∗ 0.249∗∗ 0.205∗∗

(0.009) (0.058) (0.064) (0.018) (0.078) (0.089)
Panel C. Upper Respiratory

PM2.5 0.006 0.054 0.055 0.010 0.087 0.060
(0.006) (0.042) (0.053) (0.011) (0.090) (0.074)

Panel D. Lower Respiratory
PM2.5 0.031∗∗∗ 0.143∗∗∗ 0.126∗∗ 0.036∗∗ 0.157∗∗ 0.157∗∗

(0.007) (0.041) (0.041) (0.011) (0.079) (0.059)

Obs. 5,174 5,174 5,174 2,288 2,288 2,288
Number of Cities 4 4 4 2 2 2
Sample Mean - Panel A 2.146 2.146 2.146 2.756 2.756 2.756
Sample Mean - Panel B 2.206 2.206 2.206 2.206 3.113 3.113
Sample Mean - Panel C 0.515 0.515 0.515 0.589 0.589 0.589
Sample Mean - Panel D 1.422 1.422 1.422 2.239 2.239 2.239
First-Stage Results:
Solard - -0.044∗∗∗ - - -0.051∗∗ -

- (0.012) - - (0.018) -
Cap Fac Solard - - -0.004∗∗∗ - - -0.007∗∗∗

- - (0.001) - - (0.001)
F Test - 98.278 80.811 - 48.743 79.752

Notes: This table displays estimation results from regressions of daily hospital admissions by disease on daily average PM2.5

concentrations. Estimation results are marginal effects from OLS (column (1)) and 2SLS IV regressions using daily solar
generation (column (2)) or daily solar capacity factor (column (3)) as instruments for PM2.5. Daily PM2.5 are measured in
µg/m3. Solar generation is in GWh. Solar capacity factor is between 0 and 100. All regressions include weather controls
(minimum and maximum temperature, humidity, wind speed), mining production, demographic covariates, and year and
weekend fixed effects. To facilitate the bootstrapping procedure of standard errors, we remove seasons and year × seasons fixed
effects. Bootstrapped standard errors using 50 replications appear in parentheses. Significance levels: ∗p < 0.10, ∗∗p < 0.05,
∗∗∗p < 0.001.

of day-to-day variation in solar generation allows us to fully capture variation in hospital

admissions due to changes in daily PM2.5 concentrations. We take the results in Table 5

as strong evidence that the co-benefits of solar power generation on hospital admissions

found throughout our analysis are largely due to reductions in local airborne pollution from

displaced thermal generation.
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7 Additional Robustness Checks

Alternative Groups of Cities. Our results are robust to several alternative specifica-

tions. First, we check the robustness of our wind direction analysis by using cities with fossil

fuel plants as a proxy for cities with pollution exposure. From our displacement analysis,

we are also able to consider: 1) cities upwind of displaced plants, 2) cities downwind of

non-displaced plants,32 and 3) cities downwind of ramped-up plants (see Figure 6 in Section

6.1). This latter group, however, is quite restrictive as it ultimately limits the cities to just

one. Results are in Appendix Table A15.

Reductions in hospitalizations attributable to solar generation are primarily found in

places with fossil fuel generation. The results in the first two columns of Table A15 suggest

that additional solar generation predominantly curtails respiratory admissions in cities where

displacement is possible. Namely, an additional 1-GWh of solar generation results in a 23.6

pp reduction in the rate of all respiratory hospitalizations in cities that house fossil fuel plants,

of which the majority of these effects are reductions in lower respiratory hospitalizations.

Similar to our findings with all cities and downwind cities, we do not find a statistically

significant impact on cardiovascular-related hospitalizations.

We also find that cities upwind of displaced plants or downwind of non-displaced plants

are not generally affected by solar, as almost all coefficients are statistically insignificant

and very small. We do find a negative effect, albeit small in magnitude, in cities upwind

of displaced plants. This is not unusual as we define downwind cities assuming a radius

of exposure of 45 degrees, which is quite conservative. In any case, we find no results in

cities downwind of non-displaced plants, which validates our identification strategy of using

distance to displaced thermal plants to more accurately identify the impact of solar on

health. Finally, we find large positive effects of solar on lower respiratory hospitalizations

in cities that are downwind of plants that have ramped up in response to solar generation

(column (1)). Our plant-level analysis shows that two coal-fired plants and one gas-fired unit

ramp up their production in response to the injection of this renewable (see Figure 6 and

Appendix Figure A9). Thus, it is not surprising that respiratory hospitalizations increase

in this subsample. Yet this effect disappears once we utilize our preferred set of time-fixed

effects in column (2).

Alternative Estimation Methods. We also test the robustness of our OLS health esti-

mation by utilizing alternative estimators and models: a Poisson estimator (Appendix Table

A16), and a Zero-Inflated Negative Binomial (ZINB, Appendix Table A17) and a Negative

32Defined as plants for whom the displacement regressions were insignificant.
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Binomial model (Appendix Table A18). Unlike OLS, the Poisson estimator takes into ac-

count the structure of the hospital admissions data by considering the number of counts of

the event (admissions) a day. Thus, we estimate Equation (3) by replacing the outcome

variable Healthjd for the number of admissions a day. The ZINB and Negative Binomial

specifications are variations of the Poisson estimator in which the zero-inflation of the out-

comes, i.e., the pile-up at zero, and the overdispersion of the data, respectively, are allowed.33

To interpret our coefficient estimates as rates, we restrict the coefficient of the population

size in Equation (3) to one.

Our Poisson results in Appendix Table A16 are very similar to the results obtained by

utilizing OLS. Specifically, we find that a 1-GWh increase in daily solar generation reduces

the daily rate of all respiratory hospitalizations by 6.7% in all cities, by 14.4% downwind

10km cities, by 9.3% in downwind 50km cities, and by 7.8% in downwind 100km. A similar

effect is found for hospital admissions due to lower respiratory diseases: an additional 1-GWh

increase in daily solar generation leads to a 12.5% reduction in hospitalizations due to lower

respiratory diseases in cities downwind within 10km of distance, an effect that decreases

monotonically as we move farther away to cities downwind within 50km and 100km. Notice

here that this feature was not evident in Table 4 as OLS obscures the fact that downwind

cities in our sample within 50km and 100km of distance from displaced plants are small

in population, and thus, counts of hospital admissions are less disperse as compared to the

distribution of admissions in all cities or downwind cities within 10km. This data structure is

taken into account by the Poisson estimator, and thus, consistently with one of our identifying

assumptions, the estimated marginal effect of solar on health consistently decreases with

distance to the pollution source. We obtain very similar results with the ZINB and the

Negative Binomial specifications in A17 and A18. These findings demonstrate that our

results are robust to the choice of estimator, and support the intuitive nature of a health

effect that monotonically decreases with distance to displaced power plants.

Placebo Health Outcomes Additionally, we test whether solar generation affects health

outcomes that are, presumably, unrelated to pollution. Appendix Table A19 displays the

ZINB results of this falsification test using infections (panel A) and blood diseases (excluding

anemia) (panel B). We also include Schlenker and Walker (2016)’s placebo outcomes: strokes

(panel C), bone fractures (panel D) and appendicitis (panel E).34 These results are small and

33It is important to note here that some cities in northern Chile are very small in size, which means that
many of them report zero daily hospital admissions. Alternative estimation methods to deal with this, such
as a Hurdle estimation, resulted in the lack of convergence in many of our regressions.

34The exact ICD-10 codes are A00/A099, A200/A799 and B50/B999 for infections (we exclude tuberculosis
A15/A19 and viral infections B00/B499); D65/D899 for blood disorders (excluding anemia); I60/I699 for

36



mostly statistically insignificant, regardless of the group of cities considered, which indicates

that our previous findings are not sensitive to the choice of health disease.

8 Discussion

The remarkable and rapid expansion of solar generation capacity in Chile has provided

a natural experiment to test the impact of renewable electricity sources on morbidity in a

developing country. We run a variety of different tests to quantify the health benefits of

almost 600 MW of new solar generation capacity. Overall, our results tell a positive story

about how we can employ solar energy to bring about improved health outcomes in settings

with elevated pollution exposure and reduced healthcare access.

We first demonstrate that solar energy can effectively displace fossil fuel plants, notably

plants that rely on coal and natural gas. These heavy emitters are displaced by increases

in solar generation, although the benefits may be attenuated by the ramp-up of a subset

of fossil fuel generators and the reductions in hydro and geothermal electricity. However,

given the relatively small shares of these fuel types in total generation, the attenuation of

displacement is not enough to offset the positive health benefits.

We next show that the day-to-day operation of solar plants reduces daily hospitalizations

of respiratory diseases, particularly those related to the lower airways. When taking into ac-

count the transport of pollutants using cities downwind of fossil fuel plants displaced by solar

generation, we find significant morbidity reductions associated with all types of respiratory

diseases, particularly lower respiratory diseases. The effect size is larger in towns in the im-

mediate vicinity of displaced fossil fuel plants (within 10km), yet the effect is still noticeable

up to 100km from the displaced facilities. This result demonstrates the geographic heteroge-

neous effect of solar generation and simultaneously suggests that areas with intense fossil fuel

generation will benefit more from an expansion of renewable, clean energy sources. Across

different age groups, we find the largest statistically significant impacts on hospitalizations

of infants and toddlers, the most vulnerable age groups. Furthermore, we show that the

health co-benefits of solar generation are strongest in the short-term and are distinguishable

after immediate exposure to reduced pollution from curtailed fossil fuel generation, mostly

when it comes to respiratory diseases. Our findings also reveal that long-term displacement

of fossil fuel sources may also lead to benefits in cardiovascular diseases.

Our results remain unaltered after using several robustness checks, which include the use

of cities without thermal generation, upwind cities, cities downwind of non-displaced plants,

and cities downwind of plants that have ramped up. Our results are also robust to alternative

strokes; S000/S999 for bone fractures; and K350/K389 for appendicitis.
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estimation approaches, including utilizing Poisson and negative binomial models, and to the

use of hospital admissions due to other conditions presumably not related to pollution.

Our study provides important evidence that solar generation can bring about positive

health outcomes in developing nations, increasing the social benefits of investment in power

generation capacity for these clean resources. A simple back-of-the-envelope calculation

considering an overnight hospital average stay cost of USD 706 for the case of respiratory

diseases in this country (Alvear et al., 2013), an average length of stay of 5.6 nights in our

sample, and total annual reductions in hospital admissions of 25.45 (9.38% of an average of

0.743 daily hospitalizations), we obtain an average reduction of 142.75 respiratory-related

hospital nights a year.35 This translates into over CH$80 million in savings per year, roughly

equivalent to USD 100,000 or 212 Chilean monthly minimum salaries (as of 2022). These

numbers scale up to more than CH$255 million savings a year, equivalent to USD 319,000

or 672 minimum salaries, for downwind cities within 10km of distance from displaced dirty

plants. It is important to point out that this number underestimates the total costs asso-

ciated with pollution exposure for two reasons. First, we do not estimate mortality, which

generally results in significantly larger costs than morbidity (for example, in Muller and

Mendelsohn (2007), the mortality costs are 5.5 times larger than the morbidity costs of air

pollution exposure). Furthermore, countries such as Chile that suffer from limited health-

care infrastructure would be forced to adjust their healthcare provision during spikes in air

pollution (Guidetti et al., 2021). Thus, our results should be considered as a lower bound of

the true co-benefits that solar generation can bring to developing countries.

This work can be expanded upon in several ways. First, our results suggest that solar gen-

eration may have a long-term effect on cardiovascular-related morbidity. Estimating whether

solar generation reduces mortality from pollution exposure, particularly cardiovascular-

related mortality, would help identify the full benefits of a cleaner grid in Chile. This is

something to explore in future research. Second, we lacked comprehensive data to explore

the impact of solar power on global and local pollutants beyond PM2.5. Future research

could employ satellite data to conduct this analysis. Furthermore, our work estimates the

impact of solar generation prior to the northern and southern grid interconnection in Chile;

identifying the effect once these two grids are interconnected is another potential avenue of

research outside the scope of this paper.36 These avenues remain open for future research.

35The daily rate of daily hospital admissions due to respiratory diseases across all cities is 1.216 per 100,000
people. Considering the average sample population across all cities of 61,154 inhabitants, we obtain 0.743
average hospitalizations per day.

36The a priori effect of the interconnection on the health benefits of solar generation is unclear, due to
different factors. First, Chile’s major population centers are in the south, which would imply greater impacts
of solar generation on health. However, solar generation is more likely to occur in the north, given the region’s
massive solar irradiation compared to southern Chile. Thus, transmission constraints would likely attenuate
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Jacques-Coper, M., Falvey, M., and Muñoz, R. C. (2015). Inter-daily variability of a strong

thermally-driven wind system over the Atacama Desert of South America: synoptic forc-

ing and short-term predictability using the GFS global model. Theoretical and Applied

Climatology, 121(1-2):211–223.

Johnsen, R., LaRiviere, J., and Wolff, H. (2019). Fracking, coal, and air quality. Journal of

the Association of Environmental and Resource Economists, 6(5):1001–1037.

Kaffine, D. T., McBee, B. J., and Lieskovsky, J. (2013). Emissions savings from wind power

generation in Texas. The Energy Journal, 34(1).

Knittel, C. R., Metaxoglou, K., and Trindade, A. (2015). Natural gas prices and coal

displacement: Evidence from electricity markets. Technical report, National Bureau of

Economic Research.

Knittel, C. R., Miller, D. L., and Sanders, N. J. (2016). Caution, drivers! Children present:

Traffic, pollution, and infant health. Review of Economics and Statistics, 98(2):350–366.

Kopas, J., York, E., Jin, X., Harish, S., Kennedy, R., Shen, S. V., and Urpelainen, J. (2020).

Environmental justice in India: Incidence of air pollution from coal-fired power plants.

Ecological Economics, 176:106711.

Lavaine, E. and Neidell, M. (2017). Energy production and health externalities: Evidence

from oil refinery strikes in France. Journal of the Association of Environmental and Re-

source Economists, 4(2):447–477.

Linn, J., Mastrangelo, E., and Burtraw, D. (2014). Regulating greenhouse gases from coal

power plants under the Clean Air Act. Journal of the Association of Environmental and

Resource Economists, 1(1/2):97–134.

43



Linn, J. and Muehlenbachs, L. (2018). The heterogeneous impacts of low natural gas prices on

consumers and the environment. Journal of Environmental Economics and Management,

89:1–28.

Mei, Y., Gao, L., Zhang, W., and Yang, F.-A. (2021). Do homeowners benefit when coal-fired

power plants switch to natural gas? evidence from beijing, china. Journal of Environmental

Economics and Management, 110:102566.

Millstein, D., Wiser, R., Bolinger, M., and Barbose, G. (2017). The climate and air-quality

benefits of wind and solar power in the United States. Nature Energy, 2(9):17134.

Ministry of Energy (2013). Ley 20.698: Propicia la ampliación de la matriz energética
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Appendix

Figure A1: Bulk Power Systems in Chile

Notes: This figure depicts the four bulk power system that existed in Chile until 2018. It also displays the fuel source
composition of each system: the Northern Interconnected System (SING), the Central Interconnected System (SIC), the Aysen
Electric System (SEA), and the Magallanes Electric System (SEM). SING and SIC interconnected in 2018, and the whole
system was renamed as the National Electric System (SEC). This figure was adapted from the National Energy Commission
Monthly Report, dated December 2017. https://www.cne.cl/wp-content/uploads/2015/06/RMensual_v201712.pdf
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Figure A2: Monthly Average PM2.5 Concentrations at SING and Dates of Solar Connections

Notes: This figure shows monthly average fine particle matter (PM2.5) concentrations across cities at SING hosting thermal
power plants from 2012 to 2017. Observations are in µg/m3. Gray lines represent the date (month and year) of connection of
the solar plants included in the sample (there are some solar plants connecting to the system during the same month). The
dashed-red reference line represents the World Health Organization’s 24-hour mean guideline of 15 µg/m3. We trim the top
and bottom 1% of all observations. Data come from the National Air Quality Information System (Sistema de Información
Nacional de Calidad del Aire — SINCA) from 2012 to 2017.
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Table A1: Monthly Fuel Use and Prices

Variable Mean Std. Dev. Min. Max. Obs.

Panel A. Fuel Use
Coal 34,931.76 3,210.30 25,949.25 42,148.77 2,192
Diesel 1,020.77 684.61 26.08 2,602.4 2,192
Fuel oil 369.33 301.059 1 1,219 1,187
Fuel oil #6 955.93 910.55 9 3,321.5 2,192
Natural gas 15,333.87 7,389.24 3,371.79 44,707.66 2,192

Panel B. Fuel Prices
Coal 105.41 16.21 68.19 138.73 2,192
Diesel 620.94 200.63 288.5 908.7 2,192
Fuel oil 95.79 22.91 46.67 125.33 1,187
Fuel oil #6 446.96 175.40 157 728.41 2,192
Natural gas 3.15 0.79 1.7 5.94 2,192

Notes: This table displays main descriptive statistics of monthly fossil fuel uses and prices from 2012 to 2017. Descriptive
statistics use main fuel source only. Coal, diesel and fuel oil are in tons, while natural gas is in thousands m3. Prices are in
US$/ton for coal, US$/m3 for diesel and fuel oil #6, in US$/mm btu for natural gas, and in US$/bbl for fuel oil. Data come
from the National Energy Commission.
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(a) Arica (b) Iquique

(c) Tocopilla (d) Antofagasta

Figure A3: Daily Wind Direction in Cities with Fossil Fuel Generation

Notes: This figure shows daily wind directions in four (out of five) cities that host fossil-fueled generators in our sample.
“Daytime” (dashed line) encompasses average wind direction patterns during sunshine hours (7 a.m.–7 p.m.). “Night” (solid line)
encompasses average wind direction between 7 p.m. and 7 a.m. the following day. Concentric circles represent the percentage
of time in which the wind blows in that direction, namely 10%, 25%, 50% and 90%. Data come from the Meteorological Service
and Air Quality System from 2012 to 2017. Data on daytime wind direction for Iquique (Panel 3(b)) are not available.
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Table A2: Summary Statistics on the Daily Rate of Hospital Admissions by Age Group

Disease Mean Std. Dev. Min. Max. Obs.

Panel A. Infants
Cardiovascular 0.004 0.436 0 85.324 41,648
All respiratory 0.126 1.058 0 78.309 41,648
Upper respiratory 0.007 0.212 0 29.326 41,648
Lower respiratory 0.116 1.027 0 78.309 41,648

Panel B. Toddlers
Cardiovascular 0.004 0.138 0 19.372 41,648
All respiratory 0.235 1.956 0 107.759 41,648
Upper respiratory 0.079 0.812 0 57.937 41,648
Lower respiratory 0.150 1.759 0 107.759 41,648

Panel C. Kids
Cardiovascular 0.012 0.387 0 58.893 41,648
All respiratory 0.128 2.555 0 319.489 41,648
Upper respiratory 0.065 0.930 0 85.324 41,648
Lower respiratory 0.061 2.375 0 319.489 41,648

Panel D. Adults
Cardiovascular 0.535 3.337 0 409.836 41,648
All respiratory 0.364 2.290 0 168.350 41,648
Upper respiratory 0.119 1.383 0 168.350 41,648
Lower respiratory 0.190 1.677 0 107.759 41,648

Panel E. Seniors
Cardiovascular 0.489 3.418 0 322.581 41,648
All respiratory 0.350 3.728 0 409.836 41,648
Upper respiratory 0.006 0.339 0 56.465 41,648
Lower respiratory 0.27 2.457 0 107.759 41,648

Notes: This table displays main descriptive statistics of the daily rate of hospital admissions by age group from 2012 to 2017.
Hospital admission rates are per 100,000 people. Observations are across all cities in the sample using patient’s city of origin.
Data come from the Ministry of Health, through the Department of Health Statistics and Information (DEIS) from 2012 to
2017.
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Table A3: Descriptive Statistics - Other Covariates

Variable Mean Std. Dev. Min. Max.

Panel A. All cities (n= 19)
Demographics:

Population 61,802.89 104,603.38 244 395,453
Density 19.43 47.45 0.08 229.51
Poverty Rate 14.11 9.06 2 37
Fertility Rate 11.18 6.32 0 21.6

Weather:
Min. Temp. (C) 7.10 6.34 -25 23
Max. Temp. (C) 10.72 8.65 -11.8 33.4
Humidity (%) 49.11 13.71 9.68 96.26

Panel B. Cities with fossil fuel generation (n= 5)
Demographics:

Population 167,575 140,344.43 11,090 395,453
Density 30.91 32.35 2.92 89.28
Poverty Rate 8.30 3.66 3.12 15.71
Fertility Rate 16.31 2.13 12.19 21.6

Weather:
Min. Temp. (C) 9.03 6.67 -18.4 23
Max. Temp. (C) 13.46 8.72 -11.8 33.4
Humidity (%) 52.31 14.07 9.69 96.26

Panel C. Cities without fossil fuel generation (n = 13)
Demographics:

Population 25,041.19 51,812.2 244 184,543
Density 16.42 53.11 0.08 229.51
Poverty Rate 16.29 9.82 2 37
Fertility Rate 9.40 6.49 0 20.99

Weather:
Min. Temp. (C) 6.40 6.09 -25 22
Max. Temp. (C) 9.98 8.52 -11.8 33
Humidity (%) 47.88 13.68 9.68 95.85

Notes: This table displays main descriptive statistics of covariates by groups of cities. Observations are at the city level.
There is one city in our sample, Pica, that switches from panel C to panel B due to the opening of a new fossil fuel generator
during our study period. We discard this city from panels B and C. Data comes from the National System of Municipalities
Information (SINIM) from 2012 to 2017.
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Figure A4: SING’s Monthly Load and Solar Generation

Notes: This figure depicts the total monthly load and total monthly solar power generation at SING. Information is in gigawatts
per hour (GWh). Monthly load is on the main y-axis. Monthly solar generation is on the secondary y-axis. Data comes from
the National Electricity Coordinator from 2012 to 2017.
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Figure A5: Overdispersion in the Health Outcome Variables

Notes: The left-hand panel exhibits the number of daily hospital admissions due to respiratory conditions for one of the largest
cities in the sample, Antofagasta, while the right-hand panel shows the same variable for the case of a smaller city, Tocopilla.
The overdispersion of this variable is evident in the case of the large city (left-hand side). The heterogeneity in the size of the
pile-up at zero is also clear when comparing the two cities.
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Figure A6: Within-Quarter Daily Solar Capacity Factor Over Time

Notes: The figure shows variation in daily solar capacity factor within quarters. Values represent percentages. Red dashed
line represent the sample average. Data come from the National Electricity Coordinator from 2012 to 2017.
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Figure A7: Location of Solar Generators at SING

Notes: This figure depicts the location of the solar generators at SING (northern Chile) included in our analysis. The figure
was obtained from the National Energy Comission (CNE) from https://energiamaps.cne.cl
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Table A4: The Effect of Daily Solar Energy on Daily Aggregated Fossil Fuel Generation

Coal Diesel Fuel oil Fuel oil #6 Natural gas

Fuel Use No Fuel Fuel Use No Fuel Fuel Use No Fuel Fuel Use No Fuel Fuel Use No Fuel
Lagged Use Lagged Use Lagged Use Lagged Use Lagged Use

Panel A. Generation (GWh)
Solar Gend -0.482∗∗ -0.997∗∗∗ -0.287∗∗ 0.002 0.009 -0.010 -0.037∗∗ -0.039∗∗ -0.144 -0.001

(0.158) (0.225) (0.093) (0.132) (0.030) (0.025) (0.013) (0.018) (0.106) (0.225)
Solar Cap Factord -0.048∗∗ -0.043∗∗ -0.023∗∗ -0.015 -0.0003 -0.001 -0.003 -0.004∗∗ 0.005 -0.008

(0.016) (0.020) (0.0098) (0.012) (0.001) (0.001) (0.002) (0.002) (0.012) (0.012)
Panel B. Capacity Factor

Solar Gend -0.016∗∗∗ -0.016∗∗∗ -0.018∗∗ -0.0003 0.045 0.023 -0.014 -0.024 -0.038∗∗∗ 0.003
(0.003) (0.005) (0.007) (0.011) (0.061) (0.057) (0.015) (0.017) (0.006) (0.012)

Solar Cap Factord -0.002∗∗∗ -0.001∗∗ -0.001∗∗ -0.001 -0.0004 -0.0004 -0.001 -0.002 -0.001 -0.00005
(0.0003) (0.0003) (0.0004) (0.0005) (0.002) (0.001) (0.001) (0.001) (0.001) (0.001)

Obs. 1,824 1,915 1,824 1,915 667 910 1,824 1,915 1,824 1,915

Notes: This table displays estimation results from regressions of daily aggregated fossil fuels’ generation (panel A) and fossil
fuels’ daily capacity factors (panel B) on daily solar power generation and daily solar capacity factors using alternative definitions
of fuel use. Fuel use lagged is lagged one month. Each row is a separated regression. Solar generation is in GWh. Solar capacity
factor is between 0 and 100. Estimation results are marginal effects from an OLS (daily aggregated generation), and from a
fractional logit response model (daily capacity factors). All estimations include plants with both single- and dual-fuel engines.
All regressions include daily temperature, humidity, load and price ratios as controls. Regressions using lagged fuel use also
include year, seasons, year × seasons, and weekend fixed effects. Regressions excluding fuel use include year, months, year
× months, and weekend fixed effects. Bootstrapped standard errors using 50 repetitions appear in parentheses. Significance
levels: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.001.
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Table A5: The Effect of Daily Solar Energy on Daily Aggregated Renewable Generation

Wind Hydro Geothermal

(1) (2) (1) (2) (1) (2)

Panel A. Generation (GWh)
Solard 0.015 0.099∗∗∗ -0.008∗∗∗ -0.007∗∗∗ -0.071∗∗∗ -0.026

(0.020) (0.019) (0.001) (0.002) (0.019) (0.016)
Solar Cap Factord 0.001 0.007∗∗∗ -0.0001 -0.0003∗∗ -0.010∗∗∗ -0.005∗

(0.001) (0.001) (0.0001) (0.0001) (0.003) (0.003)
Panel B. Capacity Factor

Solard -0.004 0.013∗∗ -0.021∗∗∗ -0.018∗∗∗ -0.050∗∗∗ -0.040∗∗∗

(0.005) (0.004) (0.004) (0.005) (0.013) (0.011)
Solar Cap Factord 0.002∗∗∗ 0.002∗∗∗ -0.0004 -0.001∗∗∗ -0.007∗∗∗ -0.006∗∗∗

(0.0004) (0.0003) (0.0003) (0.0003) (0.002) (0.002)

Obs. 1,489 1,489 1,915 1,915 306 306
Controls X X X X X X
τ1 fixed effects X X X
τ2 fixed effects X X X

Notes: This table displays estimation results from regressions of daily aggregated renewable generation (panel A) and renew-
ables’ daily capacity factors (panel B) on daily solar power generation and daily solar capacity factor. Each row is a separated
regression. Estimation results are marginal effects from an OLS (daily aggregated generation), and from a fractional logit re-
sponse model (daily capacity factors). Solar generation is in GWh. Solar capacity factor is between 0 and 100. All estimations
include plants with both single- and dual-fuel engines. All regressions include daily temperature, humidity and load as controls
(fuel price ratios are not included in this regression as these are renewable generators only). Vector τ1 includes year, month,
and weekend fixed effects. Vector τ2 includes year, seasons, year × seasons, and weekend fixed effects. Bootstrapped standard
errors using 50 repetitions appear in parentheses. Significance levels: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.001.
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Table A6: The Effect of Solar on Daily Aggregated Fossil Fuel Generation Using Single-Fuel
Engines Only

Coal Diesel Fuel oil Fuel oil #6

(1) (2) (1) (2) (1) (2) (1) (2)

Panel A. Generation (GWh)
Solard -0.813∗∗∗ -0.813∗∗∗ -0.017 -0.017 -0.011 -0.011 0.001 0.001

(0.137) (0.137) (0.011) (0.011) (0.023) (0.023) (0.001) (0.001)
Panel B. Capacity Factor

Solard -0.022∗∗∗ -0.022∗∗∗ -0.009∗∗ -0.009∗∗ 0.047 0.047 0.029 0.029
(0.004) (0.004) (0.004) (0.004) (0.047) (0.047) (0.018) (0.018)

Obs. 1,915 1,915 1,915 1,915 910 910 1,825 1,825
Controls X X X X X X X X
τ1 fixed effects X X X X
τ2 fixed effects X X X X

Notes: This table displays estimation results from regressions of daily aggregated fossil fuel generation (panel A) and fossil
fuels’ daily capacity factors (panel B) on daily solar power generation. Estimation results are marginal effects of daily solar
generation (in GWh) derived from an OLS regression on daily aggregated generation, and from a fractional logit response model
on daily capacity factors. All estimations include plants with both single- and dual-fuel engines. All regressions include daily
temperature, humidity, load and price ratios as controls. Vector τ1 includes year, month, and weekend fixed effects. Vector τ2
includes year, seasons, year × seasons, and weekend fixed effects. Bootstrapped standard errors using 50 repetitions appear in
parentheses. Significance levels: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.001.
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Figure A8: Diesel-Fired (Single-Fuel) EGUs and Displacement

Notes: The figure shows estimation results from regressions of daily diesel-fired generation (squares) and capacity factors
(circles) on daily solar power generation at the electricity generation unit (EGU) level. Point estimates are marginal effects
of daily solar generation (in GWh) derived from an OLS on daily aggregated generation (left y-axis), and from a fractional
logit response model on daily capacity factors (right y-axis). The estimation equations are identical to the ones in columns (2)
of Table 3. Dashed lines represent 95% confidence intervals obtained with bootstrapped standard errors using 50 repetitions.
Reference line in red is at the zero mark. All estimations use combined-cycle EGUs that report diesel as their primary fuel
source. We exclude units with dual engines that run with natural gas or that report using fuel oil as well.
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Figure A9: Natural Gas-Fired (Combined-Cycle) EGUs and Displacement

Notes: The figure shows estimation results from regressions of daily gas-fired generation (squares) and capacity factors (circles)
on daily solar power generation at the electricity generation unit (EGU) level. Natural gas-fired plants in our sample are all
combined-cycle plants. The left-hand side graph shows estimation results for gas plants. The right-hand side graph shows
estimation results for diesel plants. Point estimates are marginal effects of daily solar generation (in GWh) derived from an
OLS regression on daily aggregated generation (left y-axis), and from a fractional logit response model on daily capacity factors
(right y-axis). The estimation equations are identical to the ones in columns (2) of Table 3. Dashed lines represent 95%
confidence intervals obtained with bootstrapped standard errors using 50 repetitions. Reference line in red is at the zero mark.
All estimations use combined-cycle EGUs that report natural gas as their primary fuel source.
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Table A7: The Effect of Daily Solar Energy on the Daily Rate of Hospital Admissions by
Age - Infants

All Downwind of Displaced Units

Cities < 10km < 50km < 100km

(1) (2) (1) (2) (1) (2) (1) (2)

Panel A. Cardiovascular
Solard -0.00005 0.0002 -0.002 -0.002 -0.004 -0.004 -0.006 -0.006

(0.001) (0.002) (0.003) (0.004) (0.005) (0.004) (0.004) (0.005)
Solar Cap Factord 0.0001 0.0001 -0.0001 -0.0001 -0.0003 -0.0003 -0.0006 -0.0005

(0.0002) (0.0002) (0.0002) (0.0002) (0.0004) (0.0003) (0.0006) (0.0005)
Panel B. All Respiratory

Solard -0.032 -0.031 -0.076∗∗ -0.076∗∗ -0.042∗∗ -0.039∗∗ -0.051∗ -0.048∗

(0.026) (0.019) (0.031) (0.028) (0.017) (0.018) (0.028) (0.029)
Solar Cap Factord -0.002 -0.002 -0.006∗∗ -0.006∗∗ -0.001 -0.001 -0.006 -0.002

(0.001) (0.001) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
Panel C. Upper Respiratory

Solard 0.006 0.006 0.005 0.005 0.004∗ 0.003 0.003∗ 0.003∗

(0.004) (0.005) (0.003) (0.003) (0.002) (0.002) (0.002) (0.002)
Solar Cap Factord 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

(0.0001) (0.0001) (0.0004) (0.0003) (0.0002) (0.0002) (0.0002) (0.0002)
Panel D. Lower Respiratory

Solard -0.034 -0.033 -0.081∗∗ -0.081∗∗ -0.046∗∗ -0.043∗∗ -0.033 -0.030∗

(0.024) (0.020) (0.026) (0.028) (0.015) (0.017) (0.021) (0.015)
Solar Cap Factord -0.002 -0.002 -0.006∗∗ -0.006∗∗ -0.001 -0.001 -0.001 -0.001

(0.001) (0.001) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Observations 36,385 36,385 3,830 3,830 5,745 5,745 7,660 7,660
Number of cities 19 19 2 2 3 3 4 4
Sample Mean Y - Panel A 0.005 0.005 0.005 0.005 0.007 0.007 0.007 0.007
Sample Mean Y - Panel B 0.119 0.119 0.290 0.290 0.246 0.246 0.219 0.219
Sample Mean Y - Panel C 0.006 0.006 0.019 0.019 0.015 0.015 0.012 0.012
Sample Mean Y - Panel D 0.110 0.110 0.264 0.264 0.225 0.225 0.200 0.200

Controls X X X X X X X X
City fixed effects X X X X
City × year fixed effects X X X X

Notes: This table displays estimation results from OLS regressions of infants’ daily hospital admissions on daily solar power
generation or daily solar capacity factor. Each row is a separated regression. Solar generation is in GWh. Solar capacity factor
is between 0 and 100. Daily hospital admissions are per 100,000 people. Infants are less than 1 year old. Controls include
weather, mining production, and demographic covariates. All regressions include controls, year, seasons, year × seasons, and
weekend fixed effects. Bootstrapped standard errors using 50 repetitions appear in parentheses. Significance levels: ∗p < 0.10,
∗∗p < 0.05, ∗∗∗p < 0.001.
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Table A8: The Effect of Daily Solar Energy on the Daily Rate of Hospital Admissions by
Age - Toddlers

All Downwind of Displaced Units

Cities < 10km < 50km < 100km

(1) (2) (1) (2) (1) (2) (1) (2)

Panel A. Cardiovascular
Solard -0.00003 -0.00004 0.002 0.002 0.002 0.002 0.001 0.002

(0.001) (0.001) (0.004) (0.004) (0.002) (0.003) (0.002) (0.002)
Solar Cap Factord -0.000001 0.000002 0.0001 0.0001 0.0001 0.0001 0.0000 -0.00002

(0.0001) (0.0001) (0.001) (0.001) (0.0003) (0.0003) (0.0003) (0.0002)
Panel B. All Respiratory

Solard -0.048∗∗ -0.047∗∗ -0.128∗∗ -0.129∗∗ -0.070∗∗ -0.070 -0.073∗∗ -0.074∗

(0.019) (0.022) (0.053) (0.052) (0.035) (0.048) (0.033) (0.038)
Solar Cap Factord -0.005∗∗ -0.005∗∗ -0.008∗∗ -0.008∗∗ -0.007∗∗ -0.007∗∗ -0.007∗∗ -0.007∗∗

(0.002) (0.001) (0.003) (0.003) (0.002) (0.003) (0.003) (0.003)
Panel C. Upper Respiratory

Solard -0.008 -0.007∗ -0.041 -0.042∗ -0.023 -0.022 -0.008 -0.008
(0.006) (0.004) (0.030) (0.024) (0.018) (0.020) (0.013) (0.017)

Solar Cap Factord -0.001 -0.001 -0.003 -0.003 -0.002 -0.002 -0.0002 -0.0002
(0.0005) (0.001) (0.003) (0.002) (0.001) (0.002) (0.002) (0.002)

Panel D. Lower Respiratory
Solard -0.041∗∗ -0.040∗∗ -0.084∗∗ -0.084∗∗ -0.043 -0.044 -0.062∗∗ -0.062∗∗

(0.020) (0.020) (0.033) (0.036) (0.036) (0.028) (0.030) (0.031)
Solar Cap Factord -0.004∗∗ -0.004∗∗∗ -0.006∗∗ -0.006∗∗ -0.005∗∗ -0.005∗∗ -0.007∗∗ -0.007∗∗

(0.002) (0.001) (0.002) (0.002) (0.002) (0.002) (0.003) (0.003)

Observations 36,385 36,385 3,830 3,830 5,745 5,745 7,660 7,660
Number of cities 19 19 2 2 3 3 4 4
Sample Mean Y - Panel A 0.004 0.004 0.011 0.011 0.008 0.008 0.008 0.008
Sample Mean Y - Panel B 0.239 0.239 0.436 0.436 0.374 0.374 0.334 0.334
Sample Mean Y - Panel C 0.079 0.079 0.127 0.127 0.097 0.097 0.082 0.082
Sample Mean Y - Panel D 0.153 0.153 0.305 0.305 0.272 0.272 0.249 0.249

Controls X X X X X X X X
City fixed effects X X X X
City × year fixed effects X X X X

Notes: This table displays estimation results from OLS regressions of toddlers’ daily hospital admissions on daily solar power
generation or daily solar capacity factor. Each row is a separated regression. Solar generation is in GWh. Solar capacity factor
is between 0 and 100. Daily hospital admissions are per 100,000 people. Toddlers are between 1-5 years old. Controls include
weather, mining production, and demographic covariates. All regressions include controls, year, seasons, year × seasons, and
weekend fixed effects. Bootstrapped standard errors using 50 repetitions appear in parentheses. Significance levels: ∗p < 0.10,
∗∗p < 0.05, ∗∗∗p < 0.001.

63



Table A9: The Effect of Daily Solar Energy on the Daily Rate of Hospital Admissions by
Age - Kids

All Downwind of Displaced Units

Cities < 10km < 50km < 100km

(1) (2) (1) (2) (1) (2) (1) (2)

Panel A. Cardiovascular
Solard -0.004 -0.004 -0.010 -0.010 -0.004 -0.004 -0.003 -0.004

(0.003) (0.003) (0.006) (0.006) (0.005) (0.003) (0.004) (0.004)
Solar Cap Factord -0.001 -0.001 -0.001 -0.001 -0.00004 -0.00004 -0.001 -0.001

(0.001) (0.001) (0.001) (0.001) (0.0004) (0.0004) (0.001) (0.001)
Panel B. All Respiratory

Solard -0.001 -0.0003 -0.043 -0.043 -0.044 -0.041 -0.048 -0.047
(0.010) (0.011) (0.063) (0.070) (0.035) (0.048) (0.031) (0.030)

Solar Cap Factord 0.001 0.001 -0.001 -0.001 -0.002 -0.002 -0.001 -0.001
(0.002) (0.002) (0.004) (0.003) (0.002) (0.002) (0.002) (0.002)

Panel C. Upper Respiratory
Solard -0.008 -0.007 -0.031 -0.031 -0.034 -0.032 -0.032 -0.032

(0.007) (0.009) (0.057) (0.058) (0.046) (0.044) (0.028) (0.040)
Solar Cap Factord -0.0001 -0.0001 0.001 0.001 0.00001 0.0001 -0.0004 -0.0004

(0.001) (0.0004) (0.003) (0.003) (0.002) (0.002) (0.001) (0.001)
Panel D. Lower Respiratory

Solard 0.006 0.007 -0.013 -0.013 -0.010 -0.010 -0.016 -0.016
(0.006) (0.006) (0.025) (0.023) (0.015) (0.020) (0.017) (0.016)

Solar Cap Factord 0.001 0.001 -0.002 -0.002 -0.002 -0.002∗ -0.001 -0.001
(0.002) (0.002) (0.001) (0.002) (0.001) (0.001) (0.001) (0.001)

Observations 36,385 36,385 3,830 3,830 5,745 5,745 7,660 7,660
Number of cities 19 19 2 2 3 3 4 4
Sample Mean Y - Panel A 0.012 0.012 0.019 0.019 0.017 0.017 0.019 0.019
Sample Mean Y - Panel B 0.136 0.136 0.303 0.303 0.225 0.225 0.195 0.195
Sample Mean Y - Panel C 0.066 0.066 0.159 0.159 0.116 0.116 0.095 0.095
Sample Mean Y - Panel D 0.067 0.067 0.138 0.138 0.105 0.105 0.098 0.098

Controls X X X X X X X X
City fixed effects X X X X
City × year fixed effects X X X X

Notes: This table displays estimation results from OLS regressions of kids’ daily hospital admissions on daily solar power
generation or daily solar capacity factor. Each row is a separated regression. Solar generation is in GWh. Solar capacity factor
is between 0 and 100. Daily hospital admissions are per 100,000 people. Kids are between 6-14 years old. Controls include
weather, mining production, and demographic covariates. All regressions include controls, year, seasons, year × seasons, and
weekend fixed effects. Bootstrapped standard errors using 50 repetitions appear in parentheses. Significance levels: ∗p < 0.10,
∗∗p < 0.05, ∗∗∗p < 0.001.
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Table A10: The Effect of Daily Solar Energy on the Daily Rate of Hospital Admissions by
Age - Adults

All Downwind of Displaced Units

Cities < 10km < 50km < 100km

(1) (2) (1) (2) (1) (2) (1) (2)

Panel A. Cardiovascular
Solard -0.003 -0.002 0.001 0.001 -0.041 -0.039 -0.044 -0.040

(0.022) (0.022) (0.055) (0.055) (0.042) (0.048) (0.043) (0.044)
Solar Cap Factord -0.0002 -0.0002 -0.0003 -0.0002 -0.003 -0.003 -0.004 -0.004

(0.002) (0.002) (0.006) (0.005) (0.004) (0.004) (0.005) (0.004)
Panel B. All Respiratory

Solard -0.021 -0.022 -0.040 -0.040 0.017 0.016 -0.025 -0.023
(0.032) (0.032) (0.053) (0.052) (0.039) (0.043) (0.038) (0.043)

Solar Cap Factord -0.003 -0.003∗ -0.009∗∗ -0.009∗∗ -0.001 -0.0005 -0.004 -0.004
(0.002) (0.002) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004)

Panel C. Upper Respiratory
Solard -0.016 -0.017 -0.012 -0.012 0.009 0.006 -0.009 -0.010

(0.017) (0.018) (0.032) (0.026) (0.024) (0.022) (0.024) (0.024)
Solar Cap Factord -0.001 -0.001 -0.001 -0.001 0.001 0.001 -0.001 -0.001

(0.001) (0.002) (0.003) (0.002) (0.002) (0.003) (0.002) (0.002)
Panel D. Lower Respiratory

Solard 0.004 0.003 -0.048 -0.048 -0.010 -0.007 -0.030 -0.027
(0.030) (0.028) (0.040) (0.040) (0.037) (0.036) (0.031) (0.027)

Solar Cap Factord -0.001 -0.001 -0.007 -0.007∗∗ -0.001 -0.001 -0.002 -0.002
(0.001) (0.001) (0.004) (0.004) (0.003) (0.003) (0.003) (0.002)

Observations 36,385 36,385 3,830 3,830 5,745 5,745 7,660 7,660
Number of cities 19 19 2 2 3 3 4 4
Sample Mean Y - Panel A 0.531 0.531 1.120 1.120 0.919 0.919 0.752 0.752
Sample Mean Y - Panel B 0.369 0.369 0.756 0.756 0.604 0.604 0.473 0.473
Sample Mean Y - Panel C 0.122 0.122 0.173 0.173 0.145 0.145 0.122 0.122
Sample Mean Y - Panel D 0.191 0.191 0.466 0.466 0.367 0.367 0.281 0.281

Controls X X X X X X X X
City fixed effects X X X X
City × year fixed effects X X X X

Notes: This table displays estimation results from OLS regressions of adults’ daily hospital admissions on daily solar power
generation or daily solar capacity factor. Each row is a separated regression. Solar generation is in GWh. Solar capacity factor
is between 0 and 100. Daily hospital admissions are per 100,000 people. Adults are between 15-64 years old. Controls include
weather, mining production, and demographic covariates. All regressions include controls, year, seasons, year × seasons, and
weekend fixed effects. Bootstrapped standard errors using 50 repetitions appear in parentheses. Significance levels: ∗p < 0.10,
∗∗p < 0.05, ∗∗∗p < 0.001.

65



Table A11: The Effect of Daily Solar Energy on the Daily Rate of Hospital Admissions by
Age - Seniors

All Downwind of Displaced Units

Cities < 10km < 50km < 100km

(1) (2) (1) (2) (1) (2) (1) (2)

Panel A. Cardiovascular
Solard 0.004 0.007 -0.030 -0.031 0.013 0.010 0.032 0.030

(0.055) (0.048) (0.082) (0.067) (0.056) (0.050) (0.049) (0.058)
Solar Cap Factord -0.001 -0.001 -0.004 -0.004 -0.003 -0.003 -0.004 -0.003

(0.003) (0.003) (0.005) (0.007) (0.004) (0.004) (0.005) (0.004)
Panel B. All Respiratory

Solard -0.013 -0.013 -0.038 -0.038 -0.046 -0.053 -0.056 -0.061
(0.025) (0.034) (0.058) (0.060) (0.041) (0.037) (0.047) (0.041)

Solar Cap Factord -0.002 -0.002 0.002 0.002 0.001 0.001 0.001 0.001
(0.002) (0.002) (0.004) (0.005) (0.003) (0.003) (0.003) (0.003)

Panel C. Upper Respiratory
Solard -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.008 -0.007

(0.002) (0.002) (0.003) (0.002) (0.001) (0.001) (0.007) (0.006)
Solar Cap Factord -0.0001 -0.0001 -0.0001 -0.0001 -0.0001 -0.0001 -0.0004 -0.0004

(0.0001) (0.0001) (0.0003) (0.0002) (0.0002) (0.0002) (0.0003) (0.0004)
Panel D. Lower Respiratory

Solard -0.021 -0.022 -0.037 -0.036 -0.043 -0.048 -0.052 -0.055
(0.030) (0.032) (0.053) (0.054) (0.032) (0.038) (0.039) (0.034)

Solar Cap Factord -0.003 -0.003 0.0004 0.0004 -0.0002 -0.0004 0.0001 0.00002
(0.002) (0.002) (0.004) (0.003) (0.003) (0.003) (0.003) (0.003)

Observations 36,385 36,385 3,830 3,830 5,745 5,745 7,660 7,660
Number of cities 19 19 2 2 3 3 4 4
Sample Mean Y - Panel A 0.491 0.491 1.089 1.089 0.870 0.870 0.780 0.780
Sample Mean Y - Panel B 0.352 0.352 0.736 0.736 0.564 0.564 0.477 0.477
Sample Mean Y - Panel C 0.006 0.006 0.006 0.006 0.004 0.004 0.006 0.006
Sample Mean Y - Panel D 0.267 0.267 0.643 0.643 0.489 0.489 0.416 0.416

Controls X X X X X X X X
City fixed effects X X X X
City × year fixed effects X X X X

Notes: This table displays estimation results from OLS regressions of seniors’ daily hospital admissions on daily solar power
generation or daily solar capacity factor. Each row is a separated regression. Solar generation is in GWh. Solar capacity factor
is between 0 and 100. Daily hospital admissions are per 100,000 people. Seniors are 65 years old or more. Controls include
weather, mining production, and demographic covariates. All regressions include controls, year, seasons, year × seasons, and
weekend fixed effects. Bootstrapped standard errors using 50 repetitions appear in parentheses. Significance levels: ∗p < 0.10,
∗∗p < 0.05, ∗∗∗p < 0.001.

66



-.08

-.06

-.04

-.02

0

.02

.04

.06

R
at

e

Weekly Average Monthly Average Yearly Average

All Cities Downwind 10km Downwind 50km Downwind 100km

(a) Cardiovascular

-.08

-.06

-.04

-.02

0

.02

.04

.06

R
at

e

Weekly Average Monthly Average Yearly Average

All Cities Downwind 10km Downwind 50km Downwind 100km

(b) All Respiratory

-.08

-.06

-.04

-.02

0

.02

.04

.06

R
at

e

Weekly Average Monthly Average Yearly Average

All Cities Downwind 10km Downwind 50km Downwind 100km

(c) Upper Respiratory

-.08

-.06

-.04

-.02

0

.02

.04

.06

R
at

e

Weekly Average Monthly Average Yearly Average

All Cities Downwind 10km Downwind 50km Downwind 100km

(d) Lower Respiratory

Figure A10: The Long-Term Effect of Solar Capacity Factors on the Daily Rate of Hospital
Admissions

Notes: This figure shows estimation results of regressing daily hospital admissions on weekly, monthly, and yearly average solar
capacity factor across groups of cities. Capacity factor is between 0 and 100. Daily hospital admissions are per 100,000 people.
Controls include weather, mining production, and demographic covariates. All regressions include controls, year, seasons, year
× seasons, and weekend fixed effects in both the main and the inflate equations. Dashed lines are 95% confidence intervals
obtained by bootstrapping standard errors using 50 repetitions.
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Table A12: The Long-Term Effect of Average Solar Generation on the Daily Rate of Hospital
Admissions

t =week t =month t =year

All Downwind All Downwind All Downwind

Cities < 10km < 50km < 100km Cities < 10km < 50km < 100km Cities < 10km < 50km < 100km

Panel A. Cardiovascular
Solart -0.078 -0.045 -0.055 -0.076 -0.065 -0.114 -0.110 -0.104 -0.092 -0.248 -0.226 -0.249∗

(0.056) (0.120) (0.087) (0.081) (0.072) (0.114) (0.098) (0.091) (0.085) (0.197) (0.161) (0.137)
Solar Cap Factort -0.008∗ -0.001 -0.005 -0.008 -0.007 -0.005 -0.006 -0.004 -0.018∗∗ -0.047∗∗ -0.041∗∗ -0.037∗

(0.004) (0.008) (0.006) (0.007) (0.005) (0.011) (0.008) (0.009) (0.008) (0.021) (0.017) (0.020)
Panel B. All Respiratory

Solart -0.142∗∗ -0.425∗∗∗ -0.244∗∗ -0.293∗∗∗ -0.109 -0.215 -0.102 -0.162∗ -0.012 0.119 0.087 0.017
(0.053) (0.128) (0.099) (0.087) (0.070) (0.141) (0.120) (0.088) (0.101) (0.199) (0.121) (0.128)

Solar Cap Factort -0.013∗∗ -0.031∗∗ -0.015∗ -0.019∗∗ -0.015∗∗ -0.016 -0.004 -0.010 -0.014 0.017 0.019 0.017
(0.005) (0.011) (0.008) (0.007) (0.005) (0.013) (0.010) (0.009) (0.016) (0.023) (0.022) (0.016)

Panel C. Upper Respiratory
Solart -0.030 -0.128 -0.040 -0.066 -0.018 -0.033 0.015 -0.027 0.014 0.066 0.104∗ 0.025

(0.025) (0.095) (0.073) (0.055) (0.024) (0.101) (0.061) (0.052) (0.042) (0.100) (0.061) (0.054)
Solar Cap Factort -0.003 -0.010 -0.002 -0.004 -0.002 -0.005 0.001 -0.0002 0.004 0.001 0.010 0.006

(0.002) (0.006) (0.006) (0.005) (0.003) (0.011) (0.008) (0.005) (0.012) (0.010) (0.011) (0.008)
Panel D. Lower Respiratory

Solart -0.100∗∗ -0.318∗∗∗ -0.222∗∗ -0.248∗∗∗ -0.079∗ -0.203∗∗ -0.138∗ -0.159∗ -0.020 0.035 -0.018 -0.018
(0.051) (0.087) (0.088) (0.074) (0.048) (0.101) (0.080) (0.083) (0.073) (0.158) (0.121) (0.115)

Solar Cap Factort -0.010∗∗ -0.023∗∗ -0.014∗∗ -0.017∗∗∗ -0.012∗∗ -0.014∗ -0.007 -0.011∗ -0.020∗∗ 0.008 0.006 0.009
(0.004) (0.007) (0.006) (0.005) (0.005) (0.008) (0.007) (0.006) (0.009) (0.023) (0.018) (0.016)

Obs. 36,385 3,830 5,745 7,660 36,385 3,830 5,745 7,660 36,385 3,830 5,745 7,660
Number of cities 19 2 3 4 19 2 3 4 19 2 3 4
Controls × × × × × × × × × × × ×
City × year fixed effects × × × × × × × × × × × ×

Notes: This table displays estimation results of regressing daily hospital admissions on weekly, monthly, and yearly average
solar power generation or average solar capacity factor across groups of cities. Solar generation is in GWh. Solar capacity factor
is in between 0 and 100. Daily hospital admissions are per 100,000 people. Controls include weather, mining production, and
demographic covariates. All regressions include controls, year, seasons, year × seasons, and weekend fixed effects in both the
main and the inflate equations. Bootstrapped standard errors using 50 repetitions appear in parentheses. Significance levels:
∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.001.
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Table A13: The Effect of Daily Solar-Induced Predicted Fossil Fuel Displacement on the
Daily Rate of Hospital Admissions

All Downwind of Displaced Units

Cities < 10km < 50km < 100km

(1) (2) (1) (2) (1) (2) (1) (2)

Panel A. Cardiovascular

Ĝd 0.033 0.035 -0.107 -0.108 -0.049 -0.042 -0.074 -0.065
(0.052) (0.056) (0.193) (0.202) (0.165) (0.177) (0.149) (0.149)

Panel B. All Respiratory

Ĝd -0.072 -0.138∗∗ -0.207 -0.208 -0.145 -0.141 -0.386∗ -0.379∗

(0.053) (0.060) (0.294) (0.293) (0.209) (0.200) (0.203) (0.198)
Panel C. Upper Respiratory

Ĝd -0.003 -0.018 0.202 0.201 0.176 0.174 0.067 0.065
(0.017) (0.017) (0.177) (0.177) (0.131) (0.130) (0.108) (0.111)

Panel D. Lower Respiratory

Ĝd -0.045 -0.049 -0.483∗∗ -0.482∗∗ -0.376∗∗ -0.366∗∗ -0.510∗∗ -0.501∗∗

(0.035) (0.034) (0.226) (0.224) (0.158) (0.151) (0.162) (0.166)

Observations 36,442 36,385 3,830 3,830 5,745 5,745 7,660 7,660
Controls X X X X X X X X
City fixed effects X X X X
City × year fixed effects X X X X

Notes: This table displays estimation results from OLS regressions of daily hospital admissions on daily predicted displacement
of fossil fuel generation. Predicted displacement is in GWh. Daily hospital admissions are per 100,000 people. Controls include
weather, mining production, and demographic covariates. Bootstrapped standard errors appear in parentheses. Significance
levels: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.001.
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Table A14: Descriptive Statistics on Fine Particulate Matter (PM2.5) Concentrations

Variable Mean Std. Dev. Min. Max. Obs.
Panel A. All Cities

PM2.5 14.74 6.89 3.39 47.80 5,780
Panel B. Cities ≤ 10km Downwind of Displaced Fossil Fuel Plants

PM2.5 17.49 7.51 3.58 47.80 2,784

Notes: This table displays main descriptive statistics of fine particle matter concentrations for cities with available data. Panel
A corresponds to data from four cities hosting fossil-fueled power plants (Alto Hospicio, Antofagasta, Arica, and Tocopilla.
Panel B corresponds to data from two cities near and downwind of displaced fossil fuel plants (Alto Hospicio and Tocopilla).
Data are daily records averaged across stations from 2012 to 2017, and come from the National Air Quality Information System
(SINCA)’s website https://sinca.mma.gob.cl.
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Table A15: The Effect of Daily Solar Energy on the Daily Rate of Hospital Admissions Using
Alternative Cities

With Upwind of Downwind of Downwind of
Fossil Fuel Displaced Non-displaced Ramping-Up
Generation Plants Plants Plants

(1) (2) (1) (2) (1) (2) (1) (2)

Panel A. Cardiovascular
Solard 0.016 0.025 -0.040 -0.037 -0.034 -0.014 0.032 -0.017

(0.065) (0.056) (0.118) (0.155) (0.147) (0.134) (0.050) (0.057)
Solar Cap Facd -0.003 -0.003 -0.0004 0.00001 0.014 0.016 -0.002 -0.006

(0.004) (0.005) (0.008) (0.007) (0.011) (0.013) (0.004) (0.005)
Panel B. All Respiratory

Solard -0.233∗∗∗ -0.236∗∗∗ -0.127 -0.128 0.101 0.110 0.222∗∗ -0.085
(0.053) (0.062) (0.134) (0.165) (0.115) (0.135) (0.073) (0.087)

Solar Cap Facd -0.014∗∗ -0.014∗∗ -0.028∗∗ -0.029∗∗ -0.002 -0.002 0.014∗∗ -0.005
(0.006) (0.004) (0.009) (0.009) (0.012) (0.015) (0.006) (0.007)

Panel C. Upper Respiratory
Solard -0.084∗ -0.081 -0.009 -0.014 0.068 0.065 0.050 -0.009

(0.045) (0.049) (0.028) (0.024) (0.101) (0.090) (0.045) (0.039)
Solar Cap Facd -0.004 -0.004 -0.002 -0.003 0.004 0.004 -0.001 -0.003

(0.003) (0.003) (0.002) (0.003) (0.010) (0.011) (0.005) (0.004)
Panel D. Lower Respiratory

Solard -0.145∗∗ -0.156∗∗∗ -0.105 -0.101 0.026 0.038 0.183∗∗∗ -0.075
(0.046) (0.046) (0.137) (0.143) (0.061) (0.049) (0.054) (0.060)

Solar Cap Facd -0.013∗∗∗ -0.013∗∗∗ -0.022∗∗ -0.021∗∗ -0.005 -0.003 0.012∗∗ -0.004
(0.003) (0.004) (0.009) (0.010) (0.006) (0.005) (0.004) (0.003)

Obs. 9,575 9,575 11,490 11,490 5,745 5,745 1,915 1,915
Number of Cities 5 5 6 6 3 3 1 1
τ1 fixed effects X
τ2 fixed effects X X X X X X X
City fixed effects X X X
City × Year fixed effects X X X

Notes: This table displays estimation results from OLS regressions of daily hospital admissions on daily solar power generation
and daily solar capacity factors using alternative cities. Each row is a separated regression. Solar generation is in GWh. Solar
capacity factor is between 0 and 100. Daily hospital admissions are per 100,000 people. All regressions include controls (weather,
mining production, and demographics). Vector τ1 includes year, month, and weekend fixed effects. Vector τ2 includes year,
seasons, year × seasons, and weekend fixed effects. Bootstrapped standard errors using 50 repetitions appear in parentheses.
Significance levels: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.001.
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Table A16: The Effect of 1 GWh of Solar Generation on the Daily Rate of Hospital Admis-
sions Using a Poisson Estimator

All Cities Downwind of Displaced Fossil Fuel Plants

Cities < 10km < 50km < 100km

(1) (2) (3) (2) (3) (2) (3) (2) (3)

Panel A. Cardiovascular
Solard -0.032∗∗∗ -0.024∗ -0.022 -0.060∗ -0.059∗ -0.044 -0.040 -0.033 -0.030

(0.004) (0.013) (0.013) (0.036) (0.036) (0.035) (0.029) (0.021) (0.018)
Solar Cap Factord -0.004∗∗∗ -0.002∗∗ -0.002∗ -0.004 -0.004 -0.003 -0.003 -0.003∗ -0.003∗

(0.0005) (0.001) (0.001) (0.003) (0.003) (0.002) (0.002) (0.002) (0.002)
Panel B. All respiratory

Solard -0.041∗∗∗ -0.066∗∗∗ -0.067∗∗∗ -0.144∗∗ -0.144∗∗∗ -0.094∗∗ -0.093∗∗ -0.080∗∗∗ -0.078∗∗∗

(0.005) (0.013) (0.013) (0.048) (0.036) (0.033) (0.036) (0.021) (0.021)
Solar Cap Factord -0.005∗∗∗ -0.004∗∗∗ -0.004∗∗∗ -0.010∗∗ -0.010∗∗ -0.006∗∗ -0.006∗∗ -0.005∗∗ -0.005∗∗

(0.001) (0.001) (0.001) (0.004) (0.004) (0.002) (0.003) (0.002) (0.002)
Panel C. Upper respiratory

Solard -0.022∗∗∗ -0.027∗∗ -0.027∗∗ -0.032 -0.033 -0.021 -0.021 -0.017 -0.017
(0.003) (0.009) (0.010) (0.020) (0.020) (0.018) (0.015) (0.011) (0.012)

Solar Cap Factord -0.002∗∗∗ -0.002∗∗ -0.002∗∗∗ -0.001 -0.001 -0.001 -0.001 -0.001 -0.001
(0.0004) (0.001) (0.001) (0.002) (0.002) (0.001) (0.001) (0.001) (0.001)

Panel D. Lower respiratory
Solard -0.016∗∗∗ -0.039∗∗∗ -0.040∗∗∗ -0.127∗∗ -0.125∗∗ -0.084∗∗ -0.081∗∗∗ -0.070∗∗∗ -0.067∗∗∗

(0.003) (0.012) (0.010) (0.040) (0.041) (0.026) (0.024) (0.018) (0.020)
Solar Cap Factord -0.003∗∗∗ -0.002∗∗ -0.002∗∗ -0.010∗∗∗ -0.010∗∗∗ -0.006∗∗ -0.006∗∗ -0.005∗∗ -0.005∗∗

(0.0003) (0.001) (0.001) (0.003) (0.003) (0.003) (0.002) (0.002) (0.002)

Obs. 36,442 36,385 36,385 3,830 3,830 5,745 5,745 7,660 7,660
Controls X X X X X X X X
City-fixed effects X X X X
City × year-fixed effects X X X X

Notes: This table displays estimation results from regressions of daily hospital admissions on daily solar power generation or
daily solar capacity factor using a Poisson estimator (offsetting by population). Each row is a separated regression. Solar gen-
eration is in GWh. Solar capacity factor is between 0 and 100. Controls include weather, mining production, and demographic
covariates. All regressions include year, seasons, year × seasons, and weekend fixed effects. Bootstrapped standard errors using
50 repetitions appear in parentheses. Significance levels: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.001.
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Table A17: The Effect of 1 GWh of Solar Generation on the Daily Rate of Hospital Admis-
sions Using a ZINB Estimator

All Cities Downwind of Displaced Fossil Fuel Plants

Cities < 10km < 50km < 100km

(1) (2) (3) (2) (3) (2) (3) (2) (3)

Panel A. Cardiovascular
Solard -0.038∗∗∗ -0.028∗∗ -0.021 -0.050 -0.050 -0.038 -0.038 -0.033 -0.031

(0.004) (0.014) (0.013) (0.042) (0.038) (0.037) (0.032) (0.021) (0.021)
Solar Cap Factord -0.005∗∗∗ -0.002∗ -0.002∗∗ -0.004 -0.004 -0.003 -0.003 -0.003 -0.003∗

(0.0005) (0.001) (0.001) (0.003) (0.003) (0.002) (0.004) (0.003) (0.002)
Panel B. All respiratory

Solard -0.049∗∗∗ -0.067∗∗ -0.068∗∗∗ -0.140∗∗ -0.140∗∗ -0.094∗∗ -0.092∗∗ -0.077∗∗ -0.077∗∗∗

(0.005) (0.026) (0.014) (0.045) (0.045) (0.030) (0.035) (0.024) (0.023)
Solar Cap Factord -0.006∗∗∗ -0.004∗ -0.004∗∗∗ -0.010∗∗ -0.010∗∗ -0.005∗∗ -0.005∗ -0.005∗∗ -0.005∗∗

(0.001) (0.002) (0.001) (0.004) (0.004) (0.002) (0.003) (0.002) (0.002)
Panel C. Upper respiratory

Solard -0.015∗∗∗ -0.028∗∗ -0.027∗∗∗ -0.024 -0.024 -0.015 -0.014 -0.014 -0.018
(0.003) (0.009) (0.008) (0.209) (0.217) (0.142) (0.099) (0.182) (0.284)

Solar Cap Factord -0.001∗∗ -0.002∗∗ -0.002∗∗ -0.001 -0.001 -0.0004 -0.001 -0.0005 -0.001
(0.0004) (0.001) (0.001) (0.008) (0.006) (0.003) (0.005) (0.007) (0.014)

Panel D. Lower respiratory
Solard -0.023∗∗∗ -0.038∗ -0.041∗∗∗ -0.130∗∗ -0.127∗∗ -0.076∗∗ -0.072∗∗ -0.067∗∗∗ -0.068∗∗

(0.003) (0.019) (0.012) (0.051) (0.040) (0.036) (0.030) (0.018) (0.023)
Solar Cap Factord -0.004∗∗ -0.002 -0.002∗∗ -0.010 -0.010∗∗ -0.006∗∗ -0.006∗∗ -0.005∗∗ -0.005∗∗

(0.001) (0.002) (0.001) (0.007) (0.003) (0.003) (0.002) (0.002) (0.002)

Obs. 36,442 36,385 36,385 3,830 3,830 5,745 5,745 7,660 7,660
Controls X X X X X X X X
City-fixed effects X X X X
City × year-fixed effects X X X X

Notes: This table displays estimation results from regressions of daily hospital admissions on daily solar power generation or
daily solar capacity factor using a Zero-Inflated Negative Binomial model (offsetting by population). Each row is a separated
regression. Solar generation is in GWh. Solar capacity factor is between 0 and 100. Controls include weather, mining production,
and demographic covariates in both the main and the inflate equation. All regressions include year, seasons, year × seasons, and
weekend fixed effects. Bootstrapped standard errors using 50 repetitions appear in parentheses. Significance levels: ∗p < 0.10,
∗∗p < 0.05, ∗∗∗p < 0.001.
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Table A18: The Effect of 1 GWh of Solar Generation on the Daily Rate of Hospital Admis-
sions Using a Negative Binomial Regression Model

All Cities Downwind of Displaced Fossil Fuel Plants

Cities < 10km < 50km < 100km

(1) (2) (3) (2) (3) (2) (3) (2) (3)

Panel A. Cardiovascular
Solard -0.030∗∗∗ -0.025∗∗ -0.022∗ -0.060 -0.059 -0.044 -0.040 -0.033 -0.030

(0.004) (0.012) (0.012) (0.041) (0.039) (0.027) (0.029) (0.023) (0.020)
Solar Cap Factord -0.003∗∗∗ -0.002∗∗ -0.002∗∗ -0.004 -0.004 -0.003∗ -0.003 -0.003 -0.003∗

(0.001) (0.001) (0.001) (0.003) (0.003) (0.002) (0.002) (0.002) (0.001)
Panel B. All respiratory

Solard -0.038∗∗∗ -0.067∗∗∗ -0.068∗∗∗ -0.142∗∗ -0.142∗∗∗ -0.091∗∗∗ -0.090∗∗ -0.079∗∗∗ -0.077∗∗∗

(0.005) (0.012) (0.016) (0.048) (0.040) (0.026) (0.029) (0.021) (0.022)
Solar Cap Factord -0.005∗∗∗ -0.004∗∗ -0.004∗∗∗ -0.010∗∗ -0.010∗∗ -0.005∗∗ -0.005∗∗ -0.005∗∗ -0.005∗∗

(0.001) (0.001) (0.001) (0.004) (0.003) (0.003) (0.003) (0.002) (0.002)
Panel C. Upper respiratory

Solard -0.019∗∗∗ -0.030∗∗ -0.030∗∗∗ -0.037∗ -0.040∗ -0.023 -0.023 -0.020∗∗ -0.019∗

(0.003) (0.010) (0.009) (0.020) (0.020) (0.015) (0.018) (0.010) (0.012)
Solar Cap Factord -0.001∗∗∗ -0.002∗∗∗ -0.002∗∗∗ -0.002 -0.002 -0.001 -0.001 -0.001 -0.001

(0.0004) (0.001) (0.001) (0.002) (0.001) (0.001) (0.001) (0.001) (0.001)
Panel D. Lower respiratory

Solard -0.016∗∗∗ -0.038∗∗∗ -0.039∗∗∗ -0.125∗∗∗ -0.123∗∗ -0.082∗∗∗ -0.079∗∗ -0.069∗∗∗ -0.066∗∗∗

(0.003) (0.011) (0.009) (0.033) (0.039) (0.022) (0.025) (0.018) (0.018)
Solar Cap Factord -0.003∗∗∗ -0.002∗∗ -0.002∗∗ -0.010∗∗∗ -0.010∗∗ -0.006∗∗ -0.006∗∗ -0.005∗∗ -0.005∗∗

(0.0003) (0.001) (0.001) (0.003) (0.003) (0.002) (0.002) (0.002) (0.002)

Obs. 36,442 36,385 36,385 3,830 3,830 5,745 5,745 7,660 7,660
Controls X X X X X X X X
City-fixed effects X X X X
City × year-fixed effects X X X X

Notes: This table displays estimation results from regressions of daily hospital admissions on daily solar power generation or
daily solar capacity factor using a Negative Binomial model (offsetting by population). Each row is a separated regression.
Solar generation is in GWh. Solar capacity factor is between 0 and 100. Controls include weather, mining production, and
demographic covariates. All regressions include year, seasons, year × seasons, and weekend fixed effects. Bootstrapped standard
errors using 50 repetitions appear in parentheses. Significance levels: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.001.
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Table A19: The Effect of Daily Solar Energy on Placebo Health Outcomes

All Cities Downwind of Displaced Fossil Fuel Plants

Cities < 10km < 50km < 100km

(1) (2) (1) (2) (1) (2) (1) (2)

Panel A. Infections
Solar Gend 0.018 0.019 -0.003 -0.003 -0.009 -0.012 -0.041 -0.040∗

(0.025) (0.026) (0.024) (0.028) (0.036) (0.032) (0.030) (0.023)
Solar Cap Facd 0.003∗ 0.003 0.001 0.001 -0.0004 -0.0004 -0.002 -0.002

(0.002) (0.002) (0.002) (0.002) (0.003) (0.003) (0.002) (0.002)
Panel B. Blood-Related Diseases

Solar Gend -0.003 -0.003 0.021 0.021 0.002 0.002 0.002 0.002
(0.005) (0.008) (0.015) (0.017) (0.014) (0.016) (0.012) (0.010)

Solar Cap Facd -0.001 -0.001 0.001 0.001 0.001 0.001 0.001 0.001
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Panel C. Strokes
Solar Gend -0.024 -0.025 0.005 0.005 -0.018 -0.022 0.007 0.005

(0.022) (0.025) (0.034) (0.029) (0.032) (0.032) (0.030) (0.031)
Solar Cap Facd -0.0002 -0.0003 -0.002 -0.002 -0.002 -0.002 0.001 0.001

(0.002) (0.002) (0.002) (0.002) (0.003) (0.003) (0.003) (0.003)
Panel D. Bone Fractures

Solard 0.004 -0.001 0.056 0.057 -0.020 -0.011 -0.040 -0.036
(0.047) (0.049) (0.054) (0.061) (0.065) (0.072) (0.076) (0.078)

Solar Cap Facd 0.002 0.001 0.009∗ 0.009∗ 0.002 0.002 0.001 0.0002
(0.004) (0.004) (0.005) (0.005) (0.004) (0.006) (0.005) (0.006)

Panel E. Appendicitis
Solard 0.005 0.005 0.019 0.019 0.045 0.048 0.037 0.039

(0.023) (0.022) (0.024) (0.032) (0.034) (0.039) (0.035) (0.033)
Solar Cap Facd 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

(0.002) (0.002) (0.002) (0.003) (0.003) (0.003) (0.003) (0.003)

Obs. 36,385 36,385 3,830 3,830 5,745 5,745 7,660 7,660
Number of Cities 19 19 2 2 3 3 4 4
City fixed effects X X X X
City×year fixed effects X X X X

Notes: This table displays estimation results from OLS regressions of daily hospital admissions on daily solar power generation
and daily solar capacity factor using placebo health outcomes. Each row is a separated regression. Solar generation is in GWh.
Solar capacity factor is between 0 and 100. Daily hospital admissions are per 100,000 people. Controls include weather, mining
production, and demographic covariates. All regressions include controls, year, seasons, year × seasons, and weekend fixed
effects. Bootstrapped standard errors using 50 repetitions appear in parentheses. Significance levels: ∗p < 0.10, ∗∗p < 0.05,
∗∗∗p < 0.001.

75


	Introduction
	Power Plants' Emissions and Health Consequences
	The Power Sector in Chile
	The Generation Segment
	Power Plants' Emissions

	Data
	Plant-Level Data
	Health Outcomes
	Wind Direction
	Other Covariates

	Methods
	Displacement
	Solar Generation and Health
	Identifying Assumptions


	Results
	Fossil Fuel Displacement
	Solar Generation and Health Outcomes
	Solar-Induced Predicted Fossil Fuel Displacement and Health
	PM2.5, Solar Generation, and Health


	Additional Robustness Checks
	Discussion

