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ON INCENTIVES IN THREE-SIDED MARKETS

JORGE ARENAS AND JUAN PABLO TORRES-MARTÍNEZ

Abstract. In a class of three-sided matching problems that always have stable solutions, we show

that no stable mechanism is strategy-proof for those who internalize the trilateral structure in their

preferences. Furthermore, strong restrictions on preferences are needed to ensure that stability and

one-sided strategy-proofness are compatible for all sides of the market. These results are related to

the incompatibility between stability and one-sided group strategy-proofness in two-sided markets.
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1. Introduction

In classical two-sided matching markets, a stable outcome always exists (Gale and Shapley, 1962)

and for each side of the market there is a stable mechanism that is strategy-proof for its members

(Dubins and Freedman, 1981; Roth, 1982). Although it is well-known that the inclusion of a third

side may compromise the existence of stable matchings (Alkan, 1988; Ng and Hirschberg, 1991), the

difficulties that may arise to ensure compatibility between stability and one-sided strategy-proofness

have not been studied. This is the focus of the current paper.

We analyze the incentives to reveal information in three-sided problems with mixed preferences

(Zhang and Zhong, 2021; Arenas and Torres-Mart́ınez, 2023). Denoting by U , V , and W the sides of

the market, we assume that agents in U have preferences defined on V , agents in V have preferences

defined on W , and agents in W have lexicographic preferences defined on V × U . Moreover, all

sides of the market have the same number of agents. In this context, a matching is a distribution

of the population in triplets formed by agents of different sides of the market such that every agent
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belongs to one and only one triplet. A matching is stable when no group of three agents may form

a new triplet to improve the well-being of those who change their relevant partners.

In three-sided matching problems, a stable outcome may not exist even when agents ignore the

trilateral structure of the market in their preferences (Lam and Plaxton, 2021; Lerner, 2022). As

a consequence, there is a vast literature that studies restrictions on preference domains to ensure

stability (cf., Danilov, 2003; Boros, Gurvich, Jaslar, and Krasner, 2004; Eriksson, Sjöstrand, and

Strimling, 2006; Lahiri, 2009; Biró and McDermid, 2010; Huang, 2010; Manlove, 2013; Hofbauer,

2016; Zhang, Li, Fan, Shen, Shen, and Yu, 2019; Zhong and Bai, 2019; Bloch, Cantala, and Gibaja,

2020; Pashkovich and Poirrier, 2020; Raghavan, 2021). In some of these works, stable matchings are

found through algorithms based on the sequential application of the deferred acceptance mechanism

(Gale and Shapley, 1962). Following an analogous strategy, we characterize the stable matchings of

a three-sided problem with mixed preferences (see Propositions 1 and 2).

Regarding incentives to reveal information, we show that no stable mechanism is strategy-proof

for agents in W (see Theorem 1). Since there is a stable mechanism that is strategy-proof for agents

in U and V (see Remark 1), it follows that only those who internalize the trilateral structure of the

market in their preferences are capable of manipulating all stable mechanisms.

In our framework, an agent in W may have two reasons to misreport preferences when a stable

mechanism is implemented: she may want to change her partner in V to a preferred one; or she

may want to keep her partner in V but change the other pairs of V ×W formed. This last strategy

may improve her situation by inducing a redistribution of agents in U in order to maintain stability.

Since agents in W have lexicographic preferences defined on V × U , the first incentive to lie can

be avoided when the triplets are formed in such a way that the pairs between agents in V and W

are determined by the application of the W -optimal stable mechanism.1 Indeed, in the associated

marriage market between agents in V and W , this mechanism is strategy-proof for agents in W (see

Dubins and Freedman, 1981; Roth, 1982). Hence, what our Theorem 1 shows is that the second

incentive to lie is unavoidable. What happens is that strategy-proofness for agents in W is related

to one-sided group strategy-proofness in two-sided markets (see Proposition 3). And in marriage

markets, no stable mechanism is one-sided group strategy-proof (cf., Alcalde and Barberà, 1994).

We also show that a stable mechanism based on the sequential application of the Gale-Shapley

deferred acceptance algorithm is strategy-proof for agents in W if and only if agents in V have

acyclic preferences in the sense of Ergin (2002) (see Theorem 2). As it is well-known, Ergin acyclicity

strongly restricts the heterogeneity of preferences. Therefore, substantial restrictions are needed to

ensure that stability and one-sided strategy-proofness are compatible in our framework.

To illustrate our results, consider a centralized market for admissions to graduate programs and

fellowship allocation. Assume that applicants prioritize graduate programs over fellowships, while

graduate programs only rank applicants (no fellowships are awarded before admission). Funding

sources have preferences for graduate programs because they want to promote certain areas of

specialization. In this context, an applicant may wish to misreport her preferences when a stable

1This mechanism applies the deferred acceptance algorithm to the induced marriage market between agents in V

and W assuming that agents in W make the proposals (see Gale and Shapley, 1962).
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mechanism is implemented. For instance, a student may lower the rank of some attractive academic

alternatives to free up places in even better programs. Additionally, to improve her fellowship, a

student can prioritize some graduate programs in which she dominates other applicants, in order to

change the distribution of places and thus reduce the demand for her preferred funding sources. Our

main results ensure that these potential manipulations of preferences cannot be completely avoided

unless graduate programs classify applicants fairly homogeneously.

The rest of the paper is organized as follows. Section 2 describes our model. Section 3 proves the

existence of stable matchings. Section 4 studies the incentives to reveal information when a stable

mechanism is implemented. Section 5 determines restrictions on preference domains to ensure that

stability and one-sided strategy-proofness are compatible. Some proofs are collected in an Appendix.

2. Three-sided problems with mixed preferences

A three-sided matching problem with mixed preferences, represented by [U, V,W, (≻h)h∈H ], is

characterized by a set H = U ∪ V ∪W of agents and a preference profile (≻h)h∈H such that:

• The sets U , V , and W are disjoint and satisfy |U | = |V | = |W |.
• For each u ∈ U , ≻u is a linear order defined on V .2

• For each v ∈ V , ≻v is a linear order defined on W .

• For each w ∈ W , ≻w is a VU-lexicographic linear order defined on V ×U . That is, there is

a linear order ≻V,w defined on V and a linear order ≻U,w defined on U such that

(v, u) ≻w (v′, u′) ⇐⇒ [ v ≻V,w v′ ] or [ v = v′ and u ≻U,w u′ ].

We refer to (≻V,w,≻U,w) as the linear orders representing ≻w.

Let R be the collection of preference profiles (≻h)h∈H that satisfy the properties above.

A matching is a set M ⊆ U × V ×W such that any h ∈ H belongs to one and only one triplet

in M . Let M be the set of matchings. If a triplet (u, v, w) belongs to M ∈ M, then the relevant

partners of each member are denoted by M(u) = v, M(v) = w, and M(w) = (v, u). A matching M

is blocked by a triplet (u, v, w) ∈ U × V ×W when we have that:

v ≻u M(u) or v = M(u); w ≻v M(v) or w = M(v); (v, u) ≻w M(w).

A matching is stable when it cannot be blocked by any triplet. Hence, in a stable matching no

group of three agents of different sides of the market may deviate, forming a new triplet to improve

the well-being of members who change their relevant partners.

We refer to any function Φ : R → M as a mechanism. Moreover, it is said that:

• Φ is stable when Φ[(≻h)h∈H ] is stable in [U, V,W, (≻h)h∈H ] for any (≻h)h∈H ∈ R.

• Φ is strategy-proof for A ⊆ H when there is no agent a ∈ A such that, for some preference

profiles (≻h)h∈H , (≻′
h)h∈H ∈ R, Φ[(≻h)h̸=a,≻′

a](a) ≻a Φ[(≻h)h∈H ](a).

2A linear order is a complete, transitive, and strict preference relation.
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Let G = [R,Φ] be the non-cooperative game in which agents report preferences (≻h)h∈H and the

matching Φ[(≻h)h∈H ] is implemented. Notice that, the mechanism Φ is strategy-proof for agents in

A if and only if it is a dominant strategy for them to report their true preferences in G.

3. Existence of stable matchings

In this section, we show that any problem [U, V,W, (≻h)h∈H ] has a stable matching.

Proposition 1. Any three-sided matching problem with mixed preferences has a stable matching.

Proof. Given [U, V,W, (≻h)h∈H ], let (≻V,w,≻U,w) be the linear orders representing the preferences

of w ∈ W . It follows from Gale and Shapley (1962, Theorem 1) that the two-sided matching market

[V,W, (≻v)v∈V , (≻V,w)w∈W ] has a stable matching. Hence, there is a bijective function f : V → W

such that no (v, w) ∈ V ×W satisfies w ≻v f(v) and v ≻V,w f−1(w).

Let Z = {(v, w) ∈ V ×W : w = f(v)}. Given z = (v, w) ∈ Z, let ≻∗
z be the linear order defined

on U such that u ≻∗
z u′ if and only if u ≻U,w u′. Moreover, given u ∈ U , let ≻∗

u be the linear order

defined on Z such that z ≻∗
u z′ if and only if v ≻u v′, where z = (v, w) and z′ = (v′, w′). Since Gale

and Shapley (1962) ensures that [U,Z, (≻∗
h)h∈U∪Z ] has a stable matching, there exists a bijective

function g : U → Z such that there is no (u, z) ∈ U × Z satisfying z ≻∗
u g(u) and u ≻∗

z g−1(z).

We claim that M = {(u, v, w) ∈ U × V ×W : g(u) = (v, w)} is stable in [U, V,W, (≻h)h∈H ]. By

contradiction, suppose that (u∗, v∗, w∗) blocks M . Then, the following conditions hold:

(a) v∗ ≻u∗ M(u∗) or v∗ = M(u∗).

(b) w∗ ≻v∗ f(v∗) or w∗ = f(v∗).

(c) (v∗, u∗) ≻w∗ (f−1(w∗), g−1(f−1(w∗), w∗)).

Since ≻w∗ is a VU-lexicographic linear order, the condition (c) is equivalent to requiring that

either v∗ ≻V,w∗ f−1(w∗) or [v∗ = f−1(w∗) and u∗ ≻U,w∗ g−1(f−1(w∗), w∗)]. Hence, as f determines

a stable matching of [V,W, (≻v)v∈V , (≻V,w)w∈W ], it follows from conditions (b)-(c) that

(b′) w∗ = f(v∗).

(c′) u∗ ≻U,w∗ g−1(v∗, w∗).

If we denote z∗ = (v∗, w∗), then (c′) is equivalent to u∗ ≻∗
z∗ g−1(z∗). Since g determines a stable

matching of [U,Z, (≻∗
h)h∈U∪Z ], and v∗ ≻u∗ M(u∗) is equivalent to z∗ ≻∗

u∗ g(u∗), it follows from

conditions (a) and (b′) that v∗ = M(u∗) and f(v∗) = w∗. Hence (u∗, v∗, w∗) ∈ M , which is a

contradiction. Therefore, the matching M is stable in [U, V,W, (≻h)h∈H ].3 □

For three-sided matching problems, there are many preference domain specifications under which

a mechanisms based on the sequential application of the deferred acceptance algorithm is stable

(Danilov, 2003; Manlove, 2013; Zhong and Bai, 2019; Bloch, Cantala, and Gibaja, 2020). The same

property holds for three-sided problems with mixed preferences.

3To ensure the result of Proposition 1 it was crucial to restrict the preferences of agents in W to the domain of

VU-lexicographic preferences (cf., Arenas and Torres-Mart́ınez, 2023).
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More precisely, let DAW,3 : R → M be the mechanism that associates with each (≻h)h∈H ∈ R
the matching obtained through the following procedure:

Step 1. Given w ∈ W , let (≻V,w,≻U,w) be the linear orders representing ≻w. Assuming that

agents in W propose to agents in V , apply the deferred acceptance algorithm to the

marriage market [V,W, (≻v)v∈V , (≻V,w)w∈W ].

Let Z ⊆ V ×W be the set of pairs formed.

Step 2. For each z = (v, w) ∈ Z, let ≻∗
z be the linear order defined on U such that u ≻∗

z u′

whenever u ≻U,w u′. Moreover, for each u ∈ U , let ≻∗
u be the linear order defined on Z

such that z ≻∗
u z

′ as long as v ≻u v′, where z = (v, w) and z′ = (v′, w′).

Step 3. Assuming that agents in Z propose to agents in U , apply the deferred acceptance algo-

rithm to the marriage market [U,Z, (≻∗
h)h∈U∪Z ].

Define DAW,3[(≻h)h∈H ] as the set of triplets obtained.

Notice that, the proof of Proposition 1 ensures that DAW,3 is a stable mechanism.

4. On stability and strategy-proofness

Unlike what happens in two-sided matching models (Dubins and Freedman, 1981; Roth, 1982),

in three-sided matching markets with mixed preferences not all sides of the market have a stable

mechanism that is strategy-proof for its members.

Theorem 1. There is no stable mechanism Φ : R → M that is strategy-proof for W .

Proof. Consider a three-sided matching problem with mixed preferences [U, V,W, (≻h)h∈H ] where

the sets of agents are given by U = {u1, u2, u3, u4}, V = {v1, v2, v3, v4}, and W = {w1, w2, w3, w4}.
Suppose that (≻h)h∈U∪V satisfies the following conditions:4

≻u1
≻u2

≻u3
≻u4

v1 v2 v2 v4
... v3 v3

...
...

...
...

...
...

...
...

...

≻v1 ≻v2 ≻v3 ≻v4

w2 w1 w3 w2

w3 w2

... w4

w1

...
...

...

w4

...
...

...

Moreover, for each w ∈ W , the linear orders (≻V,w,≻U,w) representing ≻w are such that

≻V,w1 ≻V,w2 ≻V,w3 ≻V,w4

v1 v2 v3 v4

v2 v1
...

...
...

...
...

...

≻U,w1
≻U,w2

≻U,w3
≻U,w4

u1 u1 u2 u4

u3 u2 u3

...
...

...
...

...

The Proposition 2 (see Appendix) ensures that [U, V,W, (≻h)h∈H ] has only two stable matchings:

M = {(u3, v2, w1), (u1, v1, w2), (u2, v3, w3), (u4, v4, w4)},

M ′ = {(u1, v1, w1), (u2, v2, w2), (u3, v3, w3), (u4, v4, w4)}.

4In the description of preferences, the vertical dots stand for arbitrary ordering of agents.
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Therefore, if Φ : R → M is a stable mechanism, we have two alternatives:

(i) Φ[(≻h)h∈H ] = M . In this case, if all agents h ̸= w2 report their true preferences, then w2

improves her situation by reporting v2 ≻∗
V,w2

v4 ≻∗
V,w2

v3 ≻∗
V,w2

v1 instead of ≻V,w2 . Indeed,

M ′ is the only stable matching in this scenario and (v2, u2) ≻w2
(v1, u1).

(ii) Φ[(≻h)h∈H ] = M ′. In this case, if all agents h ̸= w3 report their true preferences, then w3

improves her situation by reporting v1 ≻∗
V,w3

v3 ≻∗
V,w3

v2 ≻∗
V,w3

v4 instead of ≻V,w3
. Indeed,

M is the only stable matching in this scenario and (v3, u2) ≻w3 (v3, u3).

We conclude that the stable mechanism Φ is not strategy-proof for W . □

To gain intuition about the arguments underlying the proof of Theorem 1, given a preference

profile (≻h)h∈H ∈ R, assume that the marriage market [V,W, (≻v)v∈V , (≻V,w)w∈W ] has only two

stable matchings, denoted by µ and µ′. Without loss of generality, let µ be the V -optimal stable

matching and µ′ be the W -optimal stable matching.5

Gale and Sotomayor (1985, Theorem 1) ensures that at least one agent in W has incentives to

misreport preferences when µ is implemented in the context of [V,W, (≻v)v∈V , (≻V,w)w∈W ]. Since

agents in W have VU-lexicographic preferences, an analogous property holds in the context of the

three-sided matching problem [U, V,W, (≻h)h∈H ]: given a stable mechanism Φ : R → M, at least

one agent of W should have incentives to misrepresent preferences when Φ[(≻h)h∈H ](v) = µ(v) for

all v ∈ V . This is exactly what happens in the proof of Theorem 1 (see item (i)).

Therefore, to have any chance that Φ is strategy-proof for W , the projection of Φ[(≻h)h∈H ] on

V ×W needs to be equal to µ′ (see Proposition 2 in the Appendix). However, if an agent w ∈ W

has the same partner in µ and µ′, she may have incentives to misrepresent preferences in order to

change the other couples of V ×W without modifying her partner on V . Indeed, with this action

she may improve her situation, by reducing the interest of some agents in U for the other pairs of

V ×W . This is exactly what happens in the proof of Theorem 1 (see item (ii)).

In summary, it seems that strategy-proofness for W is related to one-sided strategy-proofness

and one-sided non-bossiness in two-sided matching markets (see Proposition 3 in the Appendix).

Remark 1. There always exists a stable mechanism that is strategy-proof for those who only

consider one side of the market in their preferences. Indeed, let DAVU,3 : R → M be the mechanisms

that associates with each (≻h)h∈H the matching that is obtained by the following procedure:

Step 1. Given w ∈ W , let (≻V,w,≻U,w) be the linear orders representing ≻w. Assuming that

agents in V propose to agents in W , apply the deferred acceptance algorithm to the

marriage market [V,W, (≻v)v∈V , (≻V,w)w∈W ].

Let Z ⊆ V ×W be the set of pairs formed.

Step 2. For each z = (v, w) ∈ Z, let ≻∗
z be the linear order defined on U such that u ≻∗

z u′

whenever u ≻U,w u′. Also, for each u ∈ U , let ≻∗
u be the linear order defined on Z such

that z ≻∗
u z

′ as long as v ≻u v′, where z = (v, w) and z′ = (v′, w′).

5That is, µ is weakly preferred by every agent in V to any other stable matching of [V,W, (≻v)v∈V , (≻V,w)w∈W ],

and the analogous property holds for µ′ with respect to agents in W (see Gale and Shapley, 1962, Theorem 2).
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Step 3. Assuming that agents in U make proposals, apply the deferred acceptance algorithm to

the marriage market [U,Z, (≻∗
h)h∈U∪Z ].

Define DAVU,3[≻h)h∈H] as the set of triplets obtained.

It follows from Gale and Shapley (1962, Theorem 1) and Proposition 2 that DAVU,3[(≻h)h∈H ]

is stable in [U, V,W, (≻h)h∈H ]. Since the deferred acceptance mechanism is strategy-proof for those

that make proposals (Dubins and Freedman, 1981; Roth, 1982), the mechanism DAVU,3 is also

strategy-proof for agents in U ∪ V in the preference domain R. □

Some remarks are in order:

• One-sided Pareto efficiency dominates stability when it comes to finding a mechanism that

is strategy-proof for W . Indeed, although no stable mechanism is strategy-proof for agents

in W , using the serial dictatorship algorithm it is possible to find a mechanism that is both

strategy-proof and Pareto efficient for agents in W (see Arenas and Torres-Mart́ınez, 2022).

• In two-sided one-to-one matching problems, each side of the market has an optimal stable

outcome (Gale and Shapley, 1962) and the set of stable matchings has a lattice structure

(Knuth, 1976). These properties are lost in our context. Indeed, in the matching prob-

lem described in the proof of Theorem 1 there are only two stable outcomes, and none of

them match each agent in W with the best partner that she may have in a stable matching.6

5. Existence of stable and strategy-proof mechanisms

In marriage markets, Ergin (2002) restricts preference domains to ensure the existence of stable

and one-sided group strategy-proof mechanisms. In our framework, the same type of constraints

will guarantee the existence of a stable mechanism that is strategy-proof for agents in W .

Given a domain of preferences R′ ⊆ R, consider the following properties:

• R′ is UW-unrestricted when for every (≻h)h∈U∪W there exists (≻′
v)v∈V such that

((≻u)u∈U , (≻′
v)v∈V , (≻w)w∈W ) ∈ R′.

• R′ is V-Ergin-acyclic when there is no (≻h)h∈H ∈ R′ such that w ≻v w′ ≻v w′′ and

w′′ ≻v′ w for some agents v, v′ ∈ V and w,w′, w′′ ∈ W .

Notice that, the preference profiles of the problems considered in the proof of Theorem 1 satisfy

w2 ≻v4 w4 ≻v4 w3 and w3 ≻v3 w2. Hence, it seems that V-Ergin-acyclicity is necessary to ensure

the existence of a stable mechanism that is strategy-proof for W .

Our last result determines the conditions that a preference domain must satisfy to guarantee that

the stable mechanism DAW,3 is strategy-proof for W (see Section 3).

6While agents w1 and w2 prefer M ′ to M , agent w3 prefers M to M ′.
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Theorem 2. Let R′ ⊆ R be a UW-unrestricted preference domain. Then, DAW,3 : R′ → M is

strategy-proof for W if and only if R′ is V-Ergin-acyclic.

The proof is given in the Appendix.

This result reinforces the relevance that the trilateral structure of the market has on agents’

incentives to reveal information about preferences. Indeed, since V -Ergin-acyclicity substantially

restricts the heterogeneity of the preferences of agents in V , we conclude that strong restrictions on

R′ are necessary to ensure that DAW,3 : R′ → M is strategy-proof for W .

6. Concluding remarks

We studied stability and incentives in a class of solvable three-sided matching problems. It was

shown that no stable mechanism is strategy-proof for those that internalize the trilateral structure

in their preferences (Theorem 1). Furthermore, this incompatibility between stability and strategy-

proofness can be overcome only under strong restrictions on preferences (Theorem 2).

The study of incentives in multi-sided matching problems is still incipient (cf., Bloch, Cantala,

and Gibaja, 2020, 2023). For this reason, it is natural to ask if our results hold in other classes of

three-sided matching problems. Moreover, it is also interesting to analyze the incentives of agents

to reveal information in multi-sided matching problems (cf., Sherstyuk, 1999; Ostrovsky, 2008; Hof-

bauer, 2016). The study of these topics is a matter for future research.

Appendix

On the structure of stable matchings. Let θ : M ↠ U × V and ψ : M ↠ V ×W be the projections of

M on U × V and V ×W . That is, for each matching M ∈ M we have that

θ(M) = {(u, v) ∈ U × V :M(u) = v}, ψ(M) = {(v, w) ∈ V ×W :M(v) = w}.

The following result characterizes the structure of the set of stable matchings of a three-sided matching

problem with mixed preferences.

Proposition 2. A matching M is stable in [U, V,W, (≻h)h∈H ] if and only if the following properties hold:

(i) The matching θ(M) is stable in the marriage market [U, V, (≻u)u∈U , (≻U,M(v))v∈V ].

(ii) The matching ψ(M) is stable in the marriage market [V,W, (≻v)v∈V , (≻V,w)w∈W ].

Proof. Let M ∈ M be a stable matching of [U, V,W, (≻h)h∈H ]. The following arguments guarantee that

properties (i) and (ii) hold:

• If θ(M) is unstable in (U, V, (≻u)u∈U , (≻U,M(v))v∈V ), then there is a pair (v, u) ∈ V × U such

that v ≻u θ(M)(u) and u ≻U,M(v) θ(M)(v).7 It follows that (u, v,M(v)) blocks M . Indeed,

when the triplet (u, v,M(v)) is formed, the situation of agent v does not change, v ≻u M(u), and

(v, u) ≻M(v) M(M(v)). This contradicts the stability of M .

7Given M ∈ M and (u, v, w) ∈M , we denote θ(M)(u) = v, θ(M)(v) = u, ψ(M)(v) = w, and ψ(M)(w) = v.
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• If ψ(M) is unstable in (V,W, (≻v)v∈V , (≻V,w)w∈W ), then there is a pair (v, w) ∈ V ×W such that

w ≻v ψ(M)(v) and v ≻V,w ψ(M)(w). Let u ∈ U such that M(u) = v. Then, the triplet (u, v, w)

blocks M , because the situation of u does not change, w ≻v M(v), and (v, u) ≻w M(w). This

contradicts the stability of the matching M .

On the other hand, it follows from the proof of Proposition 1 that M ∈ M is stable in the three-sided

problem [U, V,W, (≻h)h∈H ] as long as (i) and (ii) hold. □

Three-sided markets vs. marriage markets. We will formalize the intuition that strategy-proofness

for W in our framework is related to one-sided group strategy-proofness in marriage markets.

We need some notations for preference domains:

• Let S be the set of profiles (Sh)h∈U∪V such that, for every (u, v) ∈ U × V , Su is a linear order

defined on V and Sv is a linear order defined on U .

• Let Q be the set of profiles (Qh)h∈V ∪W such that, for every (v, w) ∈ V ×W , Qv is a linear order

defined on W and Qw is a linear order defined on V .

• Given R′ ⊆ R, let Q(R′) ⊆ Q be the set of preference profiles (Qh)h∈V ∪W such that

((≻u)u∈U , (Qv)v∈V , (Qw,≻U,w)w∈W ) ∈ R′

for some linear orders (≻u)u∈U and (≻U,w)w∈W .

Notice that, for every preference profile (≻h)h∈H ∈ R and for any matching N between the members in

V and W , if (≻V,w,≻U,w) are the linear orders representing ≻w, then

((≻u)u∈U , (≻U,N(v))v∈V ) ∈ S ∧ ((≻v)v∈V , (≻V,w)w∈W ) ∈ Q.

Therefore, given Θ : S → θ(M) and Ψ : Q → ψ(M), we can define the mechanism ΦΘ,Ψ : R → M that

associates with each profile (≻h)h∈H the set of triplets (u, v, w) such that

Θ[(≻u)u∈U , (≻U,N(v))v∈V ](u) = v = Ψ[(≻v)v∈V , (≻V,w)w∈W ](w),

where N = Ψ[(≻v)v∈V , (≻V,w)w∈W ]. It follows from Proposition 2 that ΦΘ,Ψ is stable if and only if the

mechanisms Θ and Ψ are stable. Moreover, Theorem 1 guarantees that the mechanism ΦΘ,Ψ cannot be

stable and strategy-proof for W in the whole preference domain R.

Given mechanisms Θ : S → θ(M) and Ψ : Q → ψ(M), it is said that:

• Θ is strategy-proof for V when there is no agent v ∈ V , preference profile S ∈ S, and linear order

S′
v defined on U such that Θ[S−v, S

′
v](v)Sv Θ[S](v).

• Ψ is strategy-proof for W when there is no agent w ∈W , preference profile Q ∈ Q, and linear order

Q′
w defined on V such that Ψ[Q−w, Q

′
w](w)Qw Ψ[Q](w).

• Ψ is non-bossy for W when there is no agent w ∈ W , preference profile Q ∈ Q, and linear order

Q′
w defined on V such that Ψ[Q−w, Q

′
w](w) = Ψ[Q](w) and Ψ[Q−w, Q

′
w] ̸= Ψ[Q].

• Ψ is group strategy-proof for W when there is no group of agentsW ′ ⊆W , preference profile Q ∈ Q,

and linear orders (Q′
w)w∈W ′ defined on V such that:

– For all w ∈W ′, either Ψ[Q−w, Q
′
w](w)Qw Ψ[Q](w) or Ψ[Q−w, Q

′
w](w) = Ψ[Q](w).

– For some w ∈W ′, we have that Ψ[Q−w, Q
′
w](w)Qw Ψ[Q](w).
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Hence, a mechanism Ψ : Q → ψ(M) is non-bossy for W as long as no agent w ∈ W has incentives to

misreport preferences in order to modify the situation of other agents without changing her own partner.

Notice that, Pápai (2020, Lemma 1) shows that a mechanism Ψ : Q → ψ(M) is group strategy-proof for

W if and only if it is both strategy-proof for W and non-bossy for W .

Proposition 3. Let R′ ⊆ R be a UW-unrestricted sub-domain. Given stable mechanisms Θ : S → θ(M)

and Ψ : Q(R′) → ψ(M), the following properties are equivalent:

(i) The mechanism ΦΘ,Ψ : R′ → M is strategy-proof for W .

(ii) Θ is strategy-proof for V and Ψ is group strategy-proof for W .

Proof. The property that (i) implies (ii) is a consequence of the following three steps:

Step 1. If ΦΘ,Ψ : R′ → M is strategy-proof for W , then Θ : S → θ(M) is strategy-proof for V .

Suppose that Θ : S → θ(M) is not strategy-proof for V . Hence, there is an agent ṽ ∈ V , a preference

profile S = (Sh)h∈U∪V ∈ S, and some linear order S′
ṽ defined on U such that Θ[S−ṽ, S

′
ṽ](ṽ) Sṽ Θ[S](ṽ).

Since R′ ⊆ R is a UW-unrestricted sub-domain, we can consider any preference profile (≻h)h∈H ∈ R′ which

complies with following conditions:

- For each u ∈ U , ≻u= Su.

- For each v ∈ V , ≻v is an arbitrary linear order defined on W .

- For each w ∈W , ≻w is represented by (≻V,w,≻U,w), where ≻V,w is an arbitrary linear order defined

on V , ≻U,w= SN(w), and N = Ψ[(≻v)v∈V , (≻V,w)w∈W ].

Let w̃ = N(ṽ) and ≻′
w̃ be a VU-lexicographic linear order represented by (≻V,w̃, S

′
ṽ). Then, the property

Θ[S−ṽ, S
′
ṽ](ṽ) Sṽ Θ[S](ṽ) can be rewritten as θ(ΦΘ,Ψ[(≻h)h ̸=w̃,≻′

w̃])(ṽ) ≻U,w̃ θ(ΦΘ,Ψ[(≻h)h∈H ])(ṽ).

The definition of ΦΘ,Ψ ensures that ψ(ΦΘ,Ψ[(≻h)h ̸=w̃,≻′
w̃])(w̃) = ψ(ΦΘ,Ψ[(≻h)h∈H ])(w̃). Since ṽ = N(w̃)

and ≻w̃ is VU-lexicographic, it follows that ΦΘ,Ψ[(≻h)h ̸=w̃,≻′
w̃](w̃) ≻w̃ ΦΘ,Ψ[(≻h)h∈H ](w̃).

Thus, the mechanism ΦΘ,Ψ is not strategy-proof for W . Q.E.D.

Step 2. If ΦΘ,Ψ : R′ → M is strategy-proof for W , then Ψ : Q(R′) → ψ(M) is strategy-proof for W .

Suppose that Ψ : Q(R′) → ψ(M) is not strategy-proof for W . Hence, there is an agent w̃ ∈ W , a

preference profile Q = (Qh)h∈V ∪W ∈ Q(R′), and some linear order Q′
w̃ defined on V such that

(Q−w̃, Q
′
w̃) ∈ Q(R′) and Ψ[Q−w̃, Q

′
w̃](w̃) Qw̃ Ψ[Q](w̃).

By the definition of Q(R′), we can consider any (≻h)h∈H ∈ R′ satisfying the following conditions:

- For each u ∈ U , ≻u is an arbitrary linear order defined on V .

- For each v ∈ V , ≻v= Qv.

- For each w ∈ W , ≻w is represented by (≻V,w,≻U,w), where ≻V,w= Qw and ≻U,w is an arbitrary

linear order defined on U .

Let ≻′
w̃ be a VU-lexicographic linear order represented by (Q′

w̃,≻′
U,w̃), where ≻′

U,w̃ is an arbitrary linear

order defined on U . Then, the property Ψ[Q−w̃, Q
′
w̃](w̃) Qw̃ Ψ[Q](w̃) can be rewritten as

ψ(ΦΘ,Ψ[(≻h)h ̸=w̃,≻′
w̃])(w̃) ≻V,w̃ ψ(ΦΘ,Ψ[(≻h)h∈H ])(w̃).

Since≻w̃ is VU-lexicographic, the definition of ψ implies that ΦΘ,Ψ[(≻h)h ̸=w̃,≻′
w̃](w̃) ≻w̃ ΦΘ,Ψ[(≻h)h∈H ](w̃).

Thus, the mechanism ΦΘ,Ψ is not strategy-proof for W . Q.E.D.
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Step 3. If ΦΘ,Ψ : R′ → M is strategy-proof for W , then Ψ : Q(R′) → ψ(M) is non-bossy for W .

Suppose that Ψ : Q(R′) → ψ(M) is bossy for W . Hence, there is an agent w̃ ∈ W , a preference profile

Q = (Qh)h∈V ∪W ∈ Q(R′), and some linear order Q′
w̃ defined on V such that (Q−w̃, Q

′
w̃) ∈ Q(R′),

ṽ ≡ Ψ[Q−w̃, Q
′
w̃](w̃) = Ψ[Q](w̃) ∧ Ψ[Q−w̃, Q

′
w̃] ̸= Ψ[Q].

Since |V | = |W |, Ψ[Q−w̃, Q
′
w̃] ̸= Ψ[Q] implies that there are agents v1 ∈ V and w1, w2 ∈ W \ {w̃} such

that w1 ≡ Ψ[Q](v1) ̸= Ψ[Q−w̃, Q
′
w̃](v1) ≡ w2. Moreover, as R′ ⊆ R is a UW-unrestricted sub-domain, if we

denote U = {u1, . . . , un−1, ũ}, V = {v1, . . . , vn−1, ṽ} and W = {w1, . . . , wn−1, w̃}, the definition of Q(R′)

implies that any preference profile (≻h)h∈H satisfying the following conditions belongs to R′:

- The linear orders ≻u1 , ≻u2 , and ≻ũ are such that

≻u1 ≻u2 ≻ũ

v1 v1 ṽ

ṽ
...

...

...
...

...

- For u ∈ U \ {u1, u2, ũ}, ≻u is an arbitrary linear order defined on V .

- For each v ∈ V , ≻v= Qv.

- For each w ∈W there is a linear order ≻U,w defined on U such that ≻w is represented by (Qw,≻U,w),

where ≻U,w1 , ≻U,w2 , and ≻U,w̃ are such that

≻U,w1 ≻U,w2 ≻U,w̃

u1 u2 u1

...
... ũ

...
...

...

Let ≻′
w̃ be the VU-lexicographic linear order represented by (Q′

w̃,≻U,w̃). It follows that the properties

Ψ[Q−w̃, Q
′
w̃](w̃) = Ψ[Q](w̃) and Ψ[Q−w̃, Q

′
w̃] ̸= Ψ[Q] can be rewritten as

ψ(ΦΘ,Ψ[(≻h)h ̸=w̃,≻′
w̃])(w̃) = ψ(ΦΘ,Ψ[(≻h)h∈H ])(w̃),

ψ(ΦΘ,Ψ[(≻h)h ̸=w̃,≻′
w̃]) ̸= ψ(ΦΘ,Ψ[(≻h)h∈H ]).

Let M = ΦΘ,Ψ[(≻h)h∈H ] and M ′ = ΦΘ,Ψ[(≻h)h ̸=w̃,≻′
w̃].

Since M(v1) = w1 and M ′(v1) = w2, the definitions of (≻h)h∈H and ≻′
w̃ ensure that ṽ and ũ form a

couple in any stable matching of the marriage market (U, V, (≻u)u∈U , (≻U,M(v))v∈V ). Analogously, ṽ and u1

form a couple in any stable matching of (U, V, (≻u)u∈U , (≻U,M′(v))v∈V ). Hence, the Proposition 2 implies

that ΦΘ,Ψ[(≻h)h∈H ](w̃) = (ṽ, ũ) and ΦΘ,Ψ[(≻h)h ̸=w̃,≻′
w̃](w̃) = (ṽ, u1). Therefore, the mechanism ΦΘ,Ψ is

not strategy-proof for W because ΦΘ,Ψ[(≻h)h ̸=w̃,≻′
w̃](w̃) ≻w̃ ΦΘ,Ψ[(≻h)h∈H ](w̃). Q.E.D.

To show that (ii) implies (i), assume that Θ : S → θ(M) is strategy-proof for V and Ψ : Q(R′) → ψ(M)

is group strategy-proof for W (equivalently, Ψ is strategy-proof for W and non-bossy for W ).

By contradiction, assume that ΦΘ,Ψ : R′ → M is not strategy-proof for W . Hence, there is an agent

w̃ ∈W , a preference profile (≻h)h∈H ∈ R′ and a linear order ≻′
w̃ such that ((≻h)h ̸=w̃,≻′

w̃) ∈ R′ and

(v′, u′) ≡ ΦΘ,Ψ[(≻h)h ̸=w̃,≻′
w̃](w̃) ≻w̃ ΦΘ,Ψ[(≻h)h∈H ](w̃) ≡ (ṽ, ũ).
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If (≻V,w,≻U,w) are the linear orders representing ≻w, consider the profile Q = (Qh)h∈V ∪W ∈ Q(R′)

such that Qv = ≻v for all v ∈ V , Qw = ≻V,w for all w ∈ W . Also, if (≻′
V,w̃,≻′

U,w̃) are the linear orders

representing ≻′
w̃, let Q

′
w̃ be a linear order defined on V such that Q′

w̃ =≻′
V,w̃.

There are two relevant cases to analyze:

• Assume that v′ ̸= ṽ. Since ≻w̃ is VU-lexicographic, it follows that v′ ≻V,w̃ ṽ. Moreover, by the

definition of ΦΘ,Ψ, we have that ≻′
V,w̃ ̸=≻V,w̃. Since the property v′ ≻V,w̃ ṽ is equivalent to

v′ = ψ(ΦΘ,Ψ[(≻h)h ̸=w̃,≻′
w̃])(w̃) ≻V,w̃ ψ(ΦΘ,Ψ[(≻h)h∈H ])(w̃) = ṽ,

by the definition of ψ we have that Ψ[Q−w̃, Q
′
w̃](w̃) Qw̃ Ψ[Q](w̃). Therefore, the mechanism Ψ is

not strategy-proof for W . A contradiction.

• Assume that v′ = ṽ and u′ ̸= ũ. Since ≻w̃ is VU-lexicographic, it follows that u′ ≻U,w̃ ũ. There

exist two possibilities depending of the linear orders (≻′
V,w̃,≻′

U,w̃) representing ≻′
w̃:

– Suppose that ≻′
V,w̃ ̸=≻V,w̃ and ≻′

U,w̃ =≻U,w̃. Since u′ ̸= ũ and Ψ[Q−w̃, Q
′
w̃](w̃) = Ψ[Q](w̃), it

follows from the definition of ΦΘ,Ψ that there is ŵ ∈W such that Ψ[Q−w̃, Q
′
w̃](ŵ) ̸= Ψ[Q](ŵ).

Thus, the mechanism Ψ is bossy for W . A contradiction.

– Suppose that ≻′
U,w̃ ̸= ≻U,w̃. If M = ΦΘ,Ψ[(≻h)h∈H ], let S = (Sh)h∈U∪V ∈ S be such that

Su =≻u for all u ∈ U , Sv =≻U,M(v) for all v ∈ V , and S′
ṽ =≻′

U,M(ṽ). Since u
′ ≻U,w̃ ũ can be

rewritten as u′ = θ(ΦΘ,Ψ[(≻h)h̸=w̃,≻′
w̃])(ṽ) ≻U,w̃ θ(ΦΘ,Ψ[(≻h)h∈H ])(ṽ) = ũ, it follows from

the definition of θ that Θ[S−ṽ, S
′
ṽ](ṽ)Sṽ Θ[S](ṽ). This contradicts the strategy-proofness of Θ.

It follows that (v′, u′) = (ṽ, ũ), which is incompatible with our assumption that (v′, u′) ≻w̃ (ṽ, ũ).

Therefore, the mechanism ΦΘ,Ψ : R′ → M is strategy-proof for W . □

Proof of Theorem 2. Let Θ : S → θ(M) be the mechanism that associates with each (Sh)h∈U∪V the

V -optimal stable matching of the marriage market [U, V, (Sh)h∈U∪V ]. Also, let Ψ : Q(R′) → ψ(M) be the

mechanism that associates with each (Qh)h∈V ∪W ∈ Q(R′) the W -optimal stable matching of the marriage

market [V,W, (Qh)h∈V ∪W ]. Notice that DAW,3 ≡ ΦΘ,Ψ in the sub-domain R′.

[(i) =⇒ (ii)] Suppose that the mechanism DAW,3 : R′ → M is strategy-proof for W . Since R′ ⊆ R is

UW-unrestricted, Proposition 3 ensures that Ψ : Q(R′) → ψ(M) is both strategy-proof forW and non-bossy

forW . Hence, it follows from Ergin (2002, Theorem 1) that, for any preference profile (Qh)h∈V ∪W ∈ Q(R′),

the linear orders (Qv)v∈V are Ergin-acyclic in the sense that there are no v, v′ ∈ V and w,w′, w′′ ∈W such

that wQvw
′Qvw

′′ and w′′Qv′w.8 Therefore, the sub-domain R′ is V -Ergin-acyclic.

[(ii) =⇒ (i)] When R′ is UW-unrestricted and V -Ergin-acyclic, Ergin (2002, Theorem 1) ensures that

Ψ : Q(R′) → ψ(M) is both strategy-proof for W and non-bossy for W (cf., Narita, 2021). Moreover, the

mechanism Θ : S → θ(M) is strategy-proof for V (see Dubins and Freedman, 1981, Theorem 9; Roth, 1982,

Theorem 5). Hence, Proposition 3 guarantees that DAW,3 is strategy-proof for W in R′. □

8Although in our framework agents in W consider all agents in V admissible, the main result of Ergin (2002)

can be easily adapted. Admissibility plays a role only in steps [(ii) =⇒ (iv)] and [(iii) =⇒ (iv)] of the proof of his

Theorem 1. In these steps, given v1, v2 ∈ V and w1, w2, w3 ∈W , it is considered a preference profile (Qw)w∈W such

that v2Qw1v1Qw1w1Qw1 · · · , v1Qw2w2Qw2 · · · , v1Qw3v2Qw3w3Qw3 · · · , and wQwv for all w ∈ W \ {w1, w2, w3}
and v ∈ V . However, if {v3, . . . , vn} ≡ V \ {v1, v2} and {w4, . . . , wn} ≡ W \ {w1, w2, w3}, the same implications

that are obtained from (Qw)w∈W can be ensured by working with the linear orders (Q̃w)w∈W defined on V and

characterized by v2Q̃w1v1Q̃w1 · · · , v1Q̃w2v3Q̃w2 · · · , v1Q̃w3v2Q̃w3 · · · , and vjQ̃wj · · · for all j ∈ {4, . . . , n}.
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