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Abstract

The sensitivity of U.S. aggregate investment to shocks is procyclical: the response upon

impact increases by approximately 50% from the trough to the peak of the business cycle.

This feature of the data follows naturally from a DSGE model with lumpy microeconomic

capital adjustment. Beyond explaining this specific time variation, our model and evidence

provide a counterexample to the claim that microeconomic investment lumpiness is incon-

sequential for macroeconomic analysis.
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1 Introduction

U.S. nonresidential private fixed investment exhibits conditional heteroscedasticity. Figure 1

depicts a smooth, nonparametric, normalized estimate of the heteroscedasticity of the residual

from fitting an AR process to quarterly aggregate investment rates from 1960 to 2005, as a func-

tion of the average recent investment rate (see Appendix B for details). This figure shows that

investment is significantly more responsive to shocks in times of high investment.1

Figure 1: Conditional Heteroscedasticity
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In this paper we show that this nonlinear feature of the data follows naturally from a DSGE

model with lumpy microeconomic investment. The reason for conditional heteroscedasticity in

the model, is that the impulse response function is history dependent, with an initial response

that increases by approximately 50% from the bottom to the peak of the business cycle. In

particular, the longer an expansion, the larger the response of investment to further shocks.

Conversely, recovering from investment slumps is hard.

More broadly, our calibrated model suggests that over the 1960-2005 period the average ini-

tial response of investment to a productivity shock in the top quartile is 32% higher than the

average response in the bottom quartile. The left and center panels in Figure 2 depict the re-

sponse over five quarters to a one standard deviation shock taking place at selected points of

the U.S. investment cycle, for an ARCH-type time series model and our calibrated lumpy invest-

ment model, respectively.2 The periods considered are the trough in 1961, a period of average

investment activity in 1989 and the peak in 2000. The variability of these impulse responses

is large and similar in the left and center panels. For example, the immediate response to a

shock in the trough in 1961 and the peak in 2000 differ by roughly 50%. The contrast with the

1The dotted lines depict one-standard error bands.
2See Appendix B for details on the time series model.
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Figure 2: Impulse Response in Different Years - Time Series, Lumpy and Frictionless Models
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right panel of this figure, which depicts the impulse responses for a model with no microeco-

nomic frictions in investment (essentially, the standard RBC model), is evident: For the latter,

the impulse responses vary little over time.3

Beyond explaining the rich nonlinear dynamics of aggregate investment rates, our model

provides a counterexample to the claim that microeconomic investment lumpiness is inconse-

quential for macroeconomic analysis. This is relevant, since even though Caballero and Engel

(1999) found substantial aggregate nonlinearities in a partial equilibrium model with lumpy

capital adjustment, recent and important methodological contributions by Veracierto (2002),

Thomas (2002) and Khan and Thomas (2003, 2008) have provided examples where general equi-

librium undoes the partial equilibrium features.

Why do we reach a different conclusion? Because, implicitly, earlier calibrations imposed

that the bulk of investment dynamics was determined by general equilibrium constraints rather

than by adjustment costs. Instead, we focus our calibration effort on gauging the relative impor-

tance of these forces, and conclude that both adjustment costs and general equilibrium forces

play a relevant role.

Our calibration begins by noting that the objective in any dynamic macroeconomic model

is to trace the impact of aggregate shocks on aggregate endogenous variables (investment in

our context). The typical response is less than one-for-one upon impact, as a variety of mi-

croeconomic frictions and general equilibrium constraints attenuate and spread over time the

response of the endogenous variable. We refer to this process as smoothing, and decompose

it into its partial equilibrium (PE) and general equilibrium (GE) components. In the context

3The figures in the three panels are normalized so that the impulse response in 1989:I is one upon impact.
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of nonlinear lumpy-adjustment models, PE-smoothing does not refer to the existence of mi-

croeconomic inaction and lumpiness per se, but to their impact in smoothing the response of

aggregates. This is a key distinction in this class of models, as in many instances microeconomic

inaction translates into limited aggregate inertia (recall the classic Caplin and Spulber (1987) re-

sult, where price-setters follow Ss rules but the aggregate price level behaves as if there were no

microeconomic frictions). In a nutshell, our key difference with the previous literature is that

the latter explored combinations of parameter values that implied microeconomic lumpiness

but left almost no role for PE-smoothing, thereby precluding the possibility of fitting facts such

as the conditional heteroscedasticity of aggregate investment rates depicted in Figures 1 and 2.

Table 1: CONTRIBUTION OF PE AND GE FORCES TO SMOOTHING OF I /K

No frictions
(0.0425)

0%

↙ ↘

Only PE smoothing ↓ Only GE smoothing
(0.0040) (0.0036)

81.0% 84.6%

↘ ↙

PE and GE smoothing
(0.0023)

100%

Table 1 illustrates our model’s decomposition into PE- and GE-smoothing. The lower en-

try shows quarterly volatility of aggregate investment rates in our model with adjustment costs

and price responses. The upper entry reports this statistic when neither smoothing mechanism

is present, that is, when adjustment costs are set to zero and prices to their average value in

our model with both sources of smoothing. The intermediate entries consider only one source

of smoothing at a time, for example, “only PE-smoothing” retains adjustment costs but sets

prices at their average values in the economy that leads to the lower entry. The reduction of the

quarterly standard deviation of the aggregate investment rate achieved by PE-smoothing alone

amounts to 81.0% of the reduction achieved by the combination of both smoothing mecha-

nisms. Alternatively, the additional smoothing achieved by PE-forces, compared with what GE-

smoothing achieves by itself, is 15.4% of the total.
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It is clear from Table 1 that both sources of smoothing do not enter additively, so some

care is needed when quantifying their relative importance. Nonetheless, averaging the upper

and lower bounds mentioned above suggests roughly similar roles for both. By contrast, as

discussed in detail in Section 3, the contribution of PE-smoothing is very small in the recent

literature—typically the upper bound is under 20% while the lower bound is zero.

Our calibration strategy is designed to capture the role of PE-smoothing as directly as pos-

sible. To this effect, we use sectoral data to calibrate the parameters that control the impact of

micro-frictions on aggregates, before general equilibrium forces have a chance to play a signif-

icant smoothing role. Specifically, we argue that the response of semi-aggregated (e.g., 3-digit)

investment to corresponding sectoral shocks is less subject to general equilibrium forces, and

hence serves to identify the relative importance of PE-smoothing.

Table 2: VOLATILITY AND AGGREGATION

Model 3-digit Aggregate 3-dig. Agg. Ratio
Data 0.0163 0.0098 1.66
This paper: 0.0163 0.0098 1.66
Frictionless: 0.1839 0.0098 18.77
Khan-Thomas (2008): 0.4401 0.0100 44.01

The first row in Table 2 shows the observed volatility of annual sectoral and aggregate in-

vestment rates, and their ratio.4 The second and third rows show these values for our baseline

lumpy model and the model with no microeconomic frictions in investment, respectively. The

fourth row reports these statistics for the model in Khan and Thomas (2008).5 It is apparent

from this table that the frictionless model fails to match the sectoral data (it was never designed

to do so). In contrast, by reallocating smoothing from GE- to PE-forces, the lumpy investment

model is able to match both aggregate and sectoral volatility. This pins down our decomposition

and is, together with the conditional-heteroscedasticity feature, the essence of our calibration

strategy.

The remainder of the paper is organized as follows. In the next section we present our dy-

namic general equilibrium model. Section 3 discusses the calibration method in detail. Sec-

tions 4 presents the main macroeconomic implications of the model. Section 5 concludes and

is followed by several appendices.

4Sectoral investment data are only available at an annual frequency. The numbers in rows two and three come
from the annual analogues of our quarterly baseline models. For details, see Appendices A.2 and A.3.

5The lumpy model in Kahn and Thomas (2008) exhibits larger sectoral volatility than the frictionless counterpart
of our lumpy model because of differences in the curvature of the revenue function (see Section 3.1 for details).
The volatility of aggregate investment rates in the Kahn-Thomas (2008) entry of Table 2 is taken from table III in
their paper. The volatility of sectoral investment rates is based on our calculations.
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2 The Model

In this section we describe our model economy. We start with the problem of the production

units, followed by a brief description of the households and the definition of equilibrium. We

conclude with a sketch of the equilibrium computation. We follow closely Kahn and Thomas

(2008), henceforth KT, both in terms of substance and notation. Aside from parameter differ-

ences, we have three main departures from KT. First, production units face persistent sector-

specific productivity shocks, in addition to aggregate and idiosyncratic shocks. Second, pro-

duction units undertake some within-period maintenance investment which is necessary to

continue operation (some parts and machines that break down need to be replaced, see, e.g.,

McGrattan and Schmitz (1999) and Letterie, Pfann and Verick (2004) for evidence on the im-

portance of maintenance and replacement investment). Third, the distribution of aggregate

productivity shocks is continuous rather than a Markov discretization, which allows us to back

out the aggregate shocks that are fed into the model to produce Figures 2 and 3.

2.1 Production Units

The economy consists of a large number of sectors, which are each populated by a continuum

of production units. Since we do not model entry and exit decisions, the mass of these continua

is fixed and normalized to one. There is one commodity in the economy that can be consumed

or invested. Each production unit produces this commodity, employing its pre-determined

capital stock (k) and labor (n), according to the following Cobb-Douglas decreasing-returns-

to-scale production function (θ > 0, ν> 0, θ+ν< 1):

yt = ztεS,tεI ,t kθt nν
t , (1)

where z, εS and εI denote aggregate, sectoral and unit-specific (idiosyncratic) productivity shocks.

We denote the trend growth rate of aggregate productivity by (1−θ)(γ−1), so that y and k

grow at rate γ−1 along the balanced growth path. From now on we work with k and y (and later

C ) in efficiency units. The detrended aggregate productivity level, which we also denote by z,

evolves according to an AR(1) process in logs, with normal innovations v with zero mean and

variance σ2
A:

log zt = ρA log zt−1 + vt . (2)

The sectoral and idiosyncratic technology processes follow Markov chains, that are approx-

imations to continuous AR(1) processes with Gaussian innovations.6 The latter have standard

6We use the discretization in Tauchen (1986), see Appendix C for details.
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deviations σS and σI , and autocorrelations ρS and ρI , respectively. Productivity innovations

at different aggregation levels are independent. Also, sectoral productivity shocks are indepen-

dent across sectors and idiosyncratic productivity shocks are independent across productive

units.

Each period a production unit draws from a time invariant distribution, G , its current cost of

capital adjustment, ξ≥ 0, which is denominated in units of labor. G is a uniform distribution on

[0, ξ̄], common to all units. Draws are independent across units and over time, and employment

is freely adjustable.

At the beginning of a period, a production unit is characterized by its pre-determined capital

stock, the sector it belongs to and the corresponding sectoral productivity level, its idiosyncratic

productivity, and its capital adjustment cost. Given the aggregate state, it decides its employ-

ment level, n, production occurs, workers are paid, and investment decisions are made. Upon

investment the unit incurs a fixed cost of ωξ, where ω is the current real wage rate. Capital

depreciates at a rate δ and a fraction of depreciated capital is replaced to continue operation.

Then the period ends.

We also introduce replacement and maintenance investment as an essential feature of ac-

tual production units. This is justified when each productive unit can be viewed as a composite

of core and peripheral components, where core components need to be replaced immediately

for the unit to continue production. Alternatively, maintaining certain components of a pro-

ductive unit on a regular basis so that they do not depreciate at all, can be considerably more

cost effective than using a stop-go approach to maintenance.7

We define ψ̄≡ γ
1−δ > 1 as the investment rate needed to fully compensate depreciation and

trend growth. The degree of necessary maintenance or replacement, χ, can then be conve-

niently defined as a fraction of ψ̄. If χ = 0, no maintenance investment is needed; if χ = 1, all

depreciation and trend growth must be replaced for a production unit to continue operation.

We can now summarize the evolution of the unit’s capital stock (in efficiency units) between

two consecutive periods, from k to k ′, after non-maintenance investment i and maintenance

investment i M =χ(γ−1+δ)k take place, as follows:

Fixed cost paid γk ′

i 6= 0: ωξ (1−δ)k + i + i M

i = 0: 0
[
(1−δ)(1−χ)+χγ]

k

If χ= 0, then k ′ = (1−δ)k/γ, while k ′ = k if χ= 100%. We treat χ as a primitive parameter.8

7For instance, maintaining the roof of a structure on a regular basis is likely to dominate over the alternative of
repairing it only when it begins to leak.

8We note that our version of maintenance investment differs from what KT call “constrained investment”. Here,
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As we will discuss in Section 4, replacement and maintenance investment play an impor-

tant role in shaping aggregate investment dynamics, since it determines the effective (i.e., after

maintenance) depreciation rate. This differs from what happens with linear investment mod-

els, where the depreciation rate plays a minor role. We have introduced these determinants of

investment in an admittedly stylized manner with a single structural parameter, and leave for

future research a more detailed study of these issues.

Given the i.i.d. nature of the adjustment costs, it is sufficient to describe differences across

production units and their evolution by the distribution of units over (εS ,εI ,k). We denote this

distribution by µ. Thus, (z,µ) constitutes the current aggregate state and µ evolves according to

the law of motion µ′ = Γ(z,µ), which production units take as given.

Next we describe the dynamic programming problem of each production unit. We take two

shortcuts (details can be found in KT). First, we state the problem in terms of utils of the repre-

sentative household (rather than physical units), and denote by p = p(z,µ) the marginal utility

of consumption. This is the relative intertemporal price faced by a production unit. Second,

given the i.i.d. nature of the adjustment costs, continuation values can be expressed without

explicitly taking into account future adjustment costs.

It will simplify notation to define an additional parameter, ψ ∈ [1,ψ̄]:

ψ= 1+ (ψ̄−1)χ, (3)

and write maintenance investment as:9

i M = (ψ−1)(1−δ)k. (4)

Let V 1(εS ,εI ,k,ξ; z,µ) denote the expected discounted value—in utils—of a unit that is in

idiosyncratic state (εI ,k,ξ), and is in a sector with sectoral productivity εS , given the aggregate

state (z,µ). Then the expected value prior to the realization of the adjustment cost draw is given

by:

V 0(εS ,εI ,k; z,µ) =
∫ ξ̄

0
V 1(εS ,εI ,k,ξ; z,µ)G(dξ). (5)

With this notation the dynamic programming problem is given by:

V 1(εS ,εI ,k,ξ; z,µ) = max
n

{CF+max(Vi ,max
k ′ [−AC+Va])}, (6)

maintenance refers to the replacement of parts and machines without which production cannot continue, while
in KT it is an extra margin of adjustment for small investment projects.

9Note that if ψ= 1, then i M = 0, and if ψ= ψ̄, then i M = (γ−1+δ)k, undoing all trend devaluation of the capital
stock.
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where CF denotes the firm’s flow value, Vi the firm’s continuation value if it chooses inaction

and does not adjust, and Va the continuation value, net of adjustment costs AC , if the firm

adjusts its capital stock. That is:

CF = [zεSεI kθnν−ω(z,µ)n − i M ]p(z,µ), (7a)

Vi =βE[V 0(ε′S ,ε′I ,ψ(1−δ)k/γ; z ′,µ′)], (7b)

AC = ξω(z,µ)p(z,µ), (7c)

Va =−i p(z,µ)+βE[V 0(ε′S ,ε′I ,k ′; z ′,µ′)], (7d)

where both expectation operators average over next period’s realizations of the aggregate, sec-

toral and idiosyncratic shocks, conditional on this period’s values, and we recall that i M =
(ψ− 1)(1−δ)k and i = γk ′ − (1−δ)k − i M . Also, β denotes the discount factor from the rep-

resentative household.

Taking as given intra- and intertemporal prices ω(z,µ) and p(z,µ), and the law of motion

µ′ = Γ(z,µ), the production unit chooses optimally labor demand, whether to adjust its capital

stock at the end of the period, and the optimal capital stock, conditional on adjustment. This

leads to policy functions: N = N (εS ,εI ,k; z,µ) and K = K (εS ,εI ,k,ξ; z,µ). Since capital is pre-

determined, the optimal employment decision is independent of the current adjustment cost

draw.

2.2 Households

We assume a continuum of identical households that have access to a complete set of state-

contingent claims. Hence, there is no heterogeneity across households. Moreover, they own

shares in the production units and are paid dividends. We do not need to model the house-

hold side explicitly (see KT for details), and concentrate instead on the first-order conditions to

determine the equilibrium wage and the intertemporal price.

Households have a standard felicity function in consumption and (indivisible) labor:

U (C , N h) = logC − AN h , (8)

where C denotes consumption and N h the fraction of household members that work. House-

holds maximize the expected present discounted value of the above felicity function. By defini-

tion we have:

p(z,µ) ≡UC (C , N h) = 1

C (z,µ)
, (9)
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and from the intratemporal first-order condition:

ω(z,µ) =−UN (C , N h)

p(z,µ)
= A

p(z,µ)
. (10)

2.3 Recursive Equilibrium

A recursive competitive equilibrium is a set of functions(
ω, p,V 1, N ,K ,C , N h ,Γ

)
,

that satisfy

1. Production unit optimality: Takingω, p and Γ as given, V 1(εS ,εI ,k; z,µ) solves (5) and the

corresponding policy functions are N (εS ,εI ,k; z,µ) and K (εS ,εI ,k,ξ; z,µ).

2. Household optimality: Taking ω and p as given, the household’s consumption and labor

supply satisfy (8) and (9).

3. Commodity market clearing:

C (z,µ) =
∫

zεSεI kθN (εS ,εI ,k; z,µ)νdµ −
∫ ∫ ξ̄

0
[γK (εS ,εI ,k,ξ; z,µ)− (1−δ)k]dGdµ.

4. Labor market clearing:

N h(z,µ) =
∫

N (εS ,εI ,k; z,µ)dµ +
∫ ∫ ξ̄

0
ξJ

(
γK (εS ,εI ,k,ξ; z,µ)−ψ(1−δ)k

)
dGdµ,

where J (x) = 0, if x = 0 and 1, otherwise.

5. Model consistent dynamics: The evolution of the cross-section that characterizes the econ-

omy, µ′ = Γ(z,µ), is induced by K (εS ,εI ,k,ξ; z,µ) and the exogenous processes for z, εS

and εI .

Conditions 1, 2, 3 and 4 define an equilibrium given Γ, while step 5 specifies the equilibrium

condition for Γ.

2.4 Solution

As is well-known, (6) is not computable, since µ is infinite dimensional. Hence, we follow

Krusell and Smith (1997, 1998) and approximate the distribution µ by its first moment over

9



capital, and its evolution, Γ, by a simple log-linear rule. In the same vein, we approximate the

equilibrium pricing function by a log-linear rule:

log k̄ ′ =ak +bk log k̄ + ck log z, (11a)

log p =ap +bp log k̄ + cp log z, (11b)

where k̄ denotes aggregate capital holdings. Given (10), we do not have to specify an equilib-

rium rule for the real wage. As usual with this procedure, we posit this form and verify that in

equilibrium it yields a good fit to the actual law of motion (see Appendix C for details).

To implement the computation of sectoral investment rates, we simplify the problem fur-

ther and impose two additional assumptions: 1) ρS = ρI = ρ and 2) enough sectors, so that sec-

toral shocks have no aggregate effects. Combining both assumptions reduces the state space

in the production unit’s problem further to a combined technology level ε ≡ εSεI . Now, logε

follows an AR(1) with first-order autocorrelation ρ and Gaussian innovations N (0,σ2), with

σ2 ≡ σ2
S +σ2

I . Since the sectoral technology level has no aggregate consequences by assump-

tion, the production unit cannot use it to extract any more information about the future than it

has already from the combined technology level. Finally, it is this combined productivity level

that is discretized into a 19-state Markov chain. The second assumption allows us to compute

the sectoral problem independently of the aggregate general equilibrium problem.10

Combining these assumptions and substituting k̄ for µ into (6) and using (11a)–(11b), we

have that (7a)–(7d) become

CF = [zεkθnν−ω(z, k̄)n − i M ]p(z, k̄), (12a)

Vi =βE[V 0(ε′,ψ(1−δ)k/γ; z ′, k̄ ′)], (12b)

AC = ξω(z, k̄)p(z, k̄), (12c)

Va = − i p(z, k̄)+βE[V 0(ε′,k ′; z ′, k̄ ′)]. (12d)

With the above expressions, (6) becomes a computable dynamic programming problem with

policy functions N = N (ε,k; z, k̄) and K = K (ε,k,ξ; z, k̄). We solve this problem via value function

iteration on V 0 and Gauss-Hermitian numerical integration over log(z) (see Appendix C for

details).

Several features facilitate the solution of the model. First, as mentioned above, the employ-

ment decision is static. In particular it is independent of the investment decision at the end of

the period. Hence we can use the production unit’s first-order condition to maximize out the

10In Appendix C.3 we show that our results are robust to this simplifying assumption.
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optimal employment level:

N (ε,k; z, k̄) =
(
ω(z, k̄)

νzεkθ

)1/(ν−1)

. (13)

Next we comment on the computation of the production unit’s decision rules and value

function, given the equilibrium pricing and movement rules (11a)–(11b). From (12d) it is obvi-

ous that neither Va nor the optimal target capital level, conditional on adjustment, depend on

current capital holdings. This reduces the number of optimization problems in the value func-

tion iteration considerably. Comparing (12d) with (12b) shows that Va(ε; z, k̄) ≥ Vi (ε,k; z, k̄).11

It follows that there exists an adjustment cost factor that makes a production unit indifferent

between adjusting and not adjusting:

ξ̂(ε,k; z, k̄) = Va(ε; z, k̄)−Vi (ε,k; z, k̄)

ω(z, k̄)p(z, k̄)
≥ 0. (14)

We define ξT (ε,k; z, k̄) ≡ min
(
ξ̄, ξ̂(ε,k; z, k̄)

)
. Production units with ξ ≤ ξT (ε,k; z, k̄) will adjust

their capital stock. Thus,

k ′ = K (ε,k,ξ; z, k̄) =


k∗(ε; z, k̄) if ξ≤ ξT (ε,k; z, k̄),

ψ(1−δ)k/γ otherwise.

(15)

We define mandated investment for a unit with current state (ε, z, k̄) and current capital k as:

Mandated investment ≡ logγk∗(ε; z, k̄) − logψ(1−δ)k.

That is, mandated investment is the investment rate the unit would undertake, after maintain-

ing its capital, if its current adjustment cost draw were equal to zero.

Now we turn to the second step of the computational procedure that takes the value func-

tion V 0(ε,k; z, k̄) as given, and pre-specifies a randomly drawn sequence of aggregate technol-

ogy levels: {zt }. We start from an arbitrary distribution µ0, implying a value k̄0. We then recom-

pute (6), using (12a)–(12d), at every point along the sequence {zt }, and the implied sequence of

aggregate capital levels {k̄t }, without imposing the equilibrium pricing rule (11a):

Ṽ 1(ε,k,ξ; zt , k̄t ; p) = max
n

{[
ztεkθnν− i M

]
p − An + max

{
βVi , max

k ′

(−ξA− i p +βE[V 0(ε′,k ′; z ′, k̄ ′(kt ))]
)}}

,

11The production unit can always choose i = 0 and thus k∗ =ψ(1−δ)k/γ.

11



with Vi defined in (7b) and evaluated at k̄ ′ = k̄ ′(kt ). This yields new “policy functions”

Ñ = Ñ (ε,k; zt , k̄t , p)

K̃ = K̃ (ε,k,ξ; zt , k̄t , p).

We then search for a p such that, given these new decision rules and after aggregation, the

goods market clears (labor market clearing is trivially satisfied). We then use this p to find the

new aggregate capital level.

This procedure generates a time series of {pt } and {k̄t } endogenously, with which assumed

rules (11a)–(11b) can be updated via a simple OLS regression. The procedure stops when the

updated coefficients ak , bk , ck and ap , bp , cp are sufficiently close to the previous ones. We

show in Appendix C that the implied R2 of these regressions are high for all model specifications,

generally well above 0.99, indicating that production units do not make large mistakes by using

the rules (11a)–(11b). This is confirmed by the fact that adding higher moments of the capital

distribution does not increase forecasting performance significantly.

3 Calibration

Our calibration strategy and parameters are standard with two additional features: We combine

sectoral and aggregate data in order to infer the relative importance of PE- and GE-smoothing,

and we calibrate the maintenance parameter by matching the conditional heteroscedasticity of

investment in U.S. data.

3.1 Calibration Strategy

The model period is a quarter. The following parameters have standard values: β = 0.9942,

γ = 0.004, ν = 0.64, and ρA = 0.95. The depreciation rate δ matches the average quarterly in-

vestment rate in the data, 0.026, which leads to δ = 0.022. The disutility of work parameter, A,

is chosen to generate an employment rate of 0.6.

Next we explain our choices for θ and the parameters of the sectoral and idiosyncratic tech-

nology process (ρS , σS , ρI and σI ). The output elasticity of capital, θ, is set to 0.18, in order

to capture a revenue elasticity of capital, θ
1−ν , equal to 0.5, while keeping the labor share at its

0.64-value.12 We determine σS and ρS by a standard Solow residual calculation on annual 3-

12In a world with constant returns to scale and imperfect competition this amounts to a markup of approxi-
mately 22%. The curvature of our production function lies between the values considered by KT and Gourio and
Kashyap (2007). Cooper and Haltiwanger (2006), using LRD manufacturing data, estimate this parameter to be
0.592; Henessy and Whited (2005), using Compustat data, find 0.551.
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digit manufacturing data, taking into account sector-specific trends and time aggregation. This

leads to values of 0.0273 for σs and 0.8612 for ρS .13 For computational convenience we set

ρI = ρS , and σI to 0.0472, which leads to an annual standard deviation of the sum of sectoral

and idiosyncratic shocks equal to 0.10.14

We turn now to the calibration of the two key parameters of the model, the adjustment cost

parameter, ξ̄, and the maintenance parameter, χ. We also describe how we calibrate the volatil-

ity of aggregate productivity shocks, σA.

With the availability of new and more detailed establishment level data, researchers have

calibrated adjustment costs by matching establishment level moments (see, e.g., KT). This is a

promising strategy in many instances, however, there are two sources of concern in the context

of this paper’s objectives. First, one must take a stance regarding the number of productive

units in the model that correspond to one productive unit in the available micro data. Some

authors assume that this correspondence is one-to-one, while others match a large number of

model-micro-units to one observed productive unit.15

Second, in state dependent models the frequency of microeconomic adjustment is not suf-

ficient to pin down the object of primary concern, which is the aggregate impact of adjust-

ment costs. Parameter changes in other parts of the model can have a substantial effect on this

statistic, even in partial equilibrium. For example, anything that changes the drift of mandated

investment (such as the maintenance investment parameter), changes the mapping from mi-

croeconomic adjustment costs to aggregate dynamics. Caplin and Spulber (1987) provide an

extreme example of this phenomenon, where aggregate behavior is totally unrelated to microe-

conomic adjustment costs. In Appendix D we present a straightforward extension of this paper’s

main model that provides a good fit of observed establishment level moments. This extension

adds two micro parameters which, as in the Caplin and Spulber model, have no aggregate (or

sectoral) consequences, yet can alter significantly establishment level moments.

Because of these concerns, we follow an alternative approach where we use 3-digit sectoral

rather than plant level data to calibrate adjustment costs. More precisely, given a value of χ, we

choose ξ̄ to match the volatility of sectoral U.S. investment rates. Having done this, we choose

σA to match the volatility of the aggregate U.S. investment rate. This leads toσA = 0.0080.16 The

novelty in our calibration strategy is that it focuses on matching the relative importance of PE

13See Appendix A.3 for details and Appendix B.4 for robustness checks.
14In Table 16 in Appendix B.4 we consider values of 0.075 and 0.15 for the annual total standard deviation, with

no significant changes to our baseline calibration.
15See Cooper and Haltiwanger (2006) and KT for an example of the former, and Abel and Eberly (2002) and Bloom

(2009), who respectively assume that a continuum and 250 model micro units correspond to one observed plant
or firm, for examples of the latter.

16For the frictionless model we also choose σA to match aggregate investment volatility, which leads to σA =
0.0051.
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and GE smoothing directly. This approach assumes that the sectors we consider are sufficiently

disaggregated so that general equilibrium effects can be ignored while, at the same time, there

are enough micro units in them to justify the computational simplifications that can be made

with a large number of units. Hence the choice of the 3-digit level.17

Given a set of parameters, the sequence of sectoral investment rates is generated as follows:

First, the units’ optimal policies are determined as described in Section 2.4, working in gen-

eral equilibrium. Next, starting at the steady state, the economy is subjected to a sequence of

sectoral shocks. Since sectoral shocks are assumed to have no aggregate effects and ρI = ρS ,

productive units perceive them as part of their idiosyncratic shock and use their optimal poli-

cies with a value of one for the aggregate shock and a value equal to the product of the sectoral

and idiosyncratic shock—i.e. log(ε) = log(εS)+ log(εI )—for the idiosyncratic shock.18

The value of sectoral volatility of annual investment rates we match is 0.0163. To obtain

this number we compute the volatilities of the linearly detrended 3-digit sectoral investment

rates and take a weighted average. As noted in the introduction, this number is one order of

magnitude smaller than the one predicted by the frictionless model. To match this annual sec-

toral volatility in the model simulations, we aggregate over time the quarterly investment rates

generated by the model.

As shown in Figure 1, the residuals from estimating an autoregressive process for aggre-

gate U.S. investment exhibit time-varying heteroscedasticity. Appendix B finds evidence of het-

eroscedasticity, and therefore of time-varying impulse responses, for overall U.S. investment

and for equipment and structures separately, using two families of ARCH-type models.19 We

calibrate the maintenance parameter χ by matching the logarithm of the ratio between the 95th

and the 5th percentile of the estimated values for the conditional heteroscedasticity over the

1960-2005 period in the simple ARCH model described below; we refer to this statistic as the

heteroscedasticity range in what follows.

Concretely, given a quarterly series of aggregate investment-to-capital ratios, xt , the mo-

ment we match is obtained —both for actual and model-simulated data— by first regressing

the series on its lagged value and then regressing the squared residual from this regression, ê2
t ,

on xt−1. Denoting by σ95 and σ5 the 95th and 5th percentile of the fitted values from the latter

17Table 10 in Appendix A.3 provides information on the average number of establishments per 2-digit, 3-digit and
4-digit sector, both in absolute terms as well as in relation to the whole U.S. economy. Table 16 in Appendix B.4
shows that our calibration results do not change significantly if we work with 2 or 4-digit sectors.

18Appendix C.3 describes the details of the sectoral computation. There we also document a robustness exer-
cise where we relax the assumption that sectoral shocks have no general equilibrium effects, and recompute the
optimal policies when micro units consider the distribution of sectoral productivity shocks—summarized by its
mean—as an additional state variable. Our main results are essentially unchanged.

19Applying these models to U.S. output shows no evidence of heteroscedasticity, suggesting that our het-
eroscedasticity finding is not determined by properties of the underlying shocks, which can be assumed to also
drive output, but of the mechanism that leads from the shocks to investment.
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regression, the heteroscedasticity range is equal to log(σ95/σ5). The target value for the het-

eroscedasticity range in the data is 0.3021.

3.2 Calibration Results

The upper bound of the adjustment cost distribution, ξ̄, and the maintenance parameter,χ, that

jointly match the sectoral investment volatility and the conditional heteroscedasticity statistic

are ξ̄ = 8.8 and χ = 0.50, respectively.20 The average cost actually paid is much lower than the

average adjustment cost, ξ̄/2, as shown in Table 3, since productive units wait for good draws to

adjust. The third row shows that, conditional on adjusting, in our calibrated model a production

unit pays 3.6% of its annual output (column 1) or, equivalently, 5.6% of its regular wage bill

(column 2).21 These costs are at the lower end of previous estimates, as shown by comparing

them with rows 4 through 6.

Table 3: THE ECONOMIC MAGNITUDE OF ADJUSTMENT COSTS - ANNUAL

Model Cond. Adj. Costs/ Cond. Adj. Costs/

Unit’s Output Unit’s Wage Bill

(1) (2)
This paper (χ= 0): 38.9% 60.9%
This paper (χ= 25%): 12.7% 19.8%
This paper (χ= 50%): 3.6% 5.6%
Caballero-Engel (1999): 16.5% —
Cooper-Haltiwanger (2006): 22.9% —
Bloom (2009): 35.4% —
Khan-Thomas (2008): 0.5% 0.8%

Notes: Based on Table IV in Bloom (2009). For Cooper-Haltiwanger (2006) and Bloom (2009) we report the sum

of costs associated with two sources of lumpy adjustment: fixed adjustment costs and partial irreversibility. The

remaining models only have fixed adjustment costs.

The first two rows of Table 2 in the introduction and Table 4 below show that our model

fits both the sectoral and aggregate volatility of investment, as well as the range of conditional

heteroscedasticity in aggregate data. This is not surprising, since our calibration strategy is de-

signed to match these moments. In contrast, the bottom two rows in each of these tables show

that neither the frictionless counterpart of our model nor the KT model match these features.22

20The values of χ we consider are multiples of 0.10, while the grid for ξ̄ is finer.
21To compare our findings with the annual adjustment cost estimates in the literature, we report these numbers

for an annual analogue of the quarterly model.
22See footnote 5 for an explanation of why KT exhibits slightly lower nonlinearity than our calibration of a fric-

tionless model.

15



Our calibration exercise yields a maintenance coefficient of 0.5 while the limited evidence

available suggests values somewhere between 0.25 and 0.66.23 This suggests our calibrated χ is

at the upper end of the values in the literature and motivates considering variants of our lumpy

adjustment model with a smaller role for replacement and maintenance.

Table 4: HETEROSCEDASTICITY RANGE

Model log(σ95/σ5)
Data 0.3021
This paper (χ= 0): 0.1830
This paper (χ= 25%): 0.2178
This paper (χ= 50%): 0.2901
Frictionless: 0.0539
Khan-Thomas (2008): 0.0468

The first two rows in Table 3 report the magnitude of adjustment costs for χ= 0 and χ= 0.25.

When calibrating these models, we no longer match the heteroscedasticity range in the data,

but continue to match both sectoral and aggregate investment volatilities. For χ = 0.25, the

magnitude of adjustment costs lies slightly below the average of those estimated in the litera-

ture, for χ= 0 they are slightly above the maximum value, but still within the ballpark.

The second and third rows in Table 4 show the range of heteroscedasticity values for versions

of our model with values of χ smaller than in the benchmark case; the first row shows the values

obtained directly from the data using our ARCH model. Even though these ranges now are

smaller than those in the data, they continue being significantly larger than those implied by a

frictionless model. The model with χ= 0 has a heteroscedasticity range three times as large as

in the frictionless model, for the model with χ= 25% it is four times as large. The latter is much

closer to the value in the data than in the frictionless model.

Ultimately, the main difference between our calibration and KT is the size of the adjustment

cost. Table 5 makes this point, by reporting upper and lower bounds for the contribution of

PE-smoothing to total smoothing, for several models, at different frequencies. The upper and

23Cooper and Haltiwanger (2006) find the mode in the distribution of annual establishment level investment
rates at 0.04. With an effective annual drift of 0.104, this suggests a maintenance parameter just below 40%. Al-
ternatively, McGrattan and Schmitz (1999) show for Canadian data that maintenance and repair expenditures for
equipment and structures amounts to roughly 30% of expenditures on new equipment and structures. This sug-
gests just below 25% maintenance as a fraction of overall investment. And Letterie et al. (2004) report that replace-
ment investment in Germany accounts for 66% of all investment, which suggests a value for χ of 0.66.
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lower bounds for the contribution of PE-smoothing are calculated as follows:

UB = log[σ(NONE)/σ(PE)]/ log[σ(NONE)/σ(BOTH)],

LB = 1− log[σ(NONE)/σ(GE)]/log[σ(NONE)/σ(BOTH)]

where σ denotes the standard deviation of aggregate investment rates, NONE refers to the par-

tial equilibrium model with no microeconomic frictions, PE to the model that only has microe-

conomic frictions so that prices are fixed at their average levels of the GE specification, GE to the

model with endogenous price movements governed by the first-order conditions of the repre-

sentative household (10), and BOTH to the model with both micro frictions and GE constraints.

Table 5: SMOOTHING DECOMPOSITION: KT

Model PE/total smoothing

LB UB Avge.
KT-Lumpy annual: 0.0% 16.1% 8.0%
KT-Lumpy annual, our ξ̄: 8.1% 59.2% 33.7%
Our model annual (0% maint.), KT’s ξ̄: 0.8% 16.0% 8.4%
Our model annual (0% maint.): 18.9% 75.3% 47.0%
Our model annual (25% maint.): 19.1% 75.7% 47.4%
Our model annual (50% maint.): 19.9% 76.6% 48.3%
Our model quarterly (0% maint.): 14.5% 80.9% 47.7%
Our model quarterly (25% maint.): 15.4% 80.9% 48.2%
Our model quarterly (50% maint.): 15.4% 81.0% 48.2%

The main message can be gathered from the first two rows of these tables: By changing

the adjustment cost distribution in KT’s model for ours,24 its ability to generate substantial PE-

smoothing rises significantly. Conversely, introducing KT adjustment costs into an annual ver-

sion of our lumpy model with zero maintenance (third row) leads to a similarly small role of

PE-smoothing as in their model. Rows four to nine show the much larger role for PE-smoothing

under our calibration strategy, robustly for annual and quarterly calibrations and low and high

values of the maintenance parameter.

24Since KT measure labor in time units (and therefore calibrate to a steady state value of 0.3), and we measure
labor in employment units, the steady state value of which is 0.6, and adjustment costs in both cases are measured
in labor units, we actually use half of our calibrated adjustment cost parameter. Conversely, when we insert KT
adjustment costs into our model, we double it.
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3.3 Conventional RBC Moments

Before turning to the specific aggregate implications and mechanisms of microeconomic lumpi-

ness that are behind the empirical success of our model, we show that these gains do not come

at the cost of sacrificing conventional RBC-moment-matching. Tables 6 and 7 report standard

longitudinal second moments for both the lumpy model and its frictionless counterpart. We

also include a model with no idiosyncratic shocks and the higher revenue elasticity of KT (we

label it RBC). As with all models, the volatility of aggregate productivity shocks is chosen to

match the volatility of the aggregate investment rate.25

Table 6: VOLATILITY OF AGGREGATES IN PER CENT

Model Y C I N
Lumpy: 1.34 0.83 4.34 0.56
Frictionless: 1.11 0.44 5.39 0.73
RBC: 1.35 0.45 5.03 0.97
Data: 1.36 0.94 4.87 1.27

Table 7: PERSISTENCE OF AGGREGATES

Model Y C I N I/K
Lumpy: 0.70 0.71 0.70 0.70 0.92
Frictionless: 0.69 0.79 0.67 0.67 0.86
RBC: 0.70 0.80 0.68 0.68 0.92
Data: 0.91 0.87 0.91 0.90 0.96

Overall, the second moments of the lumpy model are reasonable and comparable to those

of the frictionless models. While the former exacerbates the inability of RBC models to match

the volatility of employment (we use data from the establishment survey on total employment

from the BLS), the lumpy model improves significantly when matching the volatility of con-

sumption.26 The lumpy model also increases slightly the persistence of most aggregate vari-

ables, bringing these statistics closer to their values in the data.

25The value of σA required for the RBC model is 0.0058. For the lumpy model, the employment statistics are
computed from total employment, that is including those workers who work on adjusting the capital stock. We
work with all variables in logs and detrend then with an HP-filter using a bandwidth of 1600.

26Consistent with our model, we define aggregate consumption as consumption of nondurables and service mi-
nus housing services. Also, we define output as the sum of this consumption aggregate and aggregate investment.
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4 Aggregate Investment Dynamics

In this section we describe the mechanism behind our model’s ability to match the conditional

heteroscedasticity of aggregate investment rates. In particular, we show that lumpy adjustment

models generate history dependent aggregate impulse responses.

Figure 3: Time Paths of the Responsiveness Index
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Figure 3 plots the evolution of the quarterly responsiveness index for the 1960-2005 period

(in log deviation from its average value). The solid and dashed lines represent the index for the

lumpy and frictionless models, while the dotted line represents the index for the ARCH-type

time series model discussed in Section 3.1.

Following Caballero and Engel (1993b), the responsiveness index at time t is defined as fol-

lows: Given an economy characterized by a joint distribution of capital and productivity µt ,

and an aggregate productivity level zt , we denote the resulting aggregate investment rate by
I
K (µt , log zt ) and define the normalized response of this economy to a positive and negative one

standard deviation aggregate productivity shock, respectively, as

I+(µt , log zt ) ≡
(

I

K
(µt , log zt +σA) − I

K
(µt , log zt )

)
,

I−(µt , log zt ) ≡
(

I

K
(µt , log zt −σA) − I

K
(µt , log zt )

)
,

where σA is the standard deviation of the aggregate innovation. The Responsiveness Index at
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time t then is defined as:

Ft ≡ 0.5
(
I+(µt , log zt ) − I−(µt , log zt )

)
. (16)

That is, this index captures the response upon impact of the aggregate investment rate to an

aggregate productivity innovation, conditional on the current state of the economy.

The shocks fed into the model are the ones backed out to match actual aggregate quar-

terly investment rates over the sample period. We initialize the process with the economy at its

steady state in the fourth quarter of 1959.27

The figure confirms the statement in the introduction, according to which in the lumpy cap-

ital adjustment model the initial response to an aggregate shock varies significantly more over

time than in a frictionless model: The responsiveness index grows by 50.9% between trough

and peak, which is similar to the 46.8% variation obtained from the simple ARCH-type model

discussed in Section 3.1 and considerably larger than the 11.6% variation implied by the fric-

tionless model.

To understand how lumpy adjustment models generate time varying impulse responses,

two features of the time paths of the responsiveness index are important. Note first that the

index fluctuates much less in the frictionless economy than in the lumpy economy. Recall also

that the frictionless economy only has general equilibrium forces to move this index around.

From these two observations we can conjecture that the contribution of the general equilibrium

forces to the volatility of the index in the lumpy economy is minor.

It follows from this figure that it is the decline in the strength of the PE-smoothing mecha-

nism that is responsible for the rise in the index during the boom phase. When this mechanism

is weakened, the responsiveness index in the lumpy economy grows by more than that of the

frictionless economy in a boom.

Figure 4 illustrates why the PE-smoothing mechanism weakens as the boom progresses. The

figure shows the cross-section of mandated investment (and the probability of adjusting, con-

ditional on mandated investment) at three points in time: a period of average investment in the

first quarter of 1989 (solid line), a period of booming aggregate investment, the second quar-

ter of 2000 (dashed line), and a period of depressed aggregate investment in the first quarter

of 1961 (doted line).28 It is apparent from this figure that during the boom the cross-section of

27By “steady state” we mean the ergodic (time-average) distribution, which we calculate as follows: starting from
an arbitrary capital distribution and the ergodic distribution of the idiosyncratic shocks, we simulate the devel-
opment of an economy with no aggregate innovations for 300 periods, but using the policy functions under the
assumption of an economy subject to aggregate shocks.

28See Section 2.4 for the formal definition of mandated investment. Also note that the scale on the left of the
figure is for the mandated investment densities, while the scale on the right is for the adjustment hazards. See
Appendix A.2, Figure 10 for a time path of the quarterly aggregate investment rate in the U.S.
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Figure 4: Investment Boom-Bust Episode: Cross-section and Hazard
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mandated investment moves toward regions where the probability of adjustment is higher and

steeper. The fraction of micro units with mandated investment close to zero decreases consid-

erably during the boom, while the fraction of units with mandated investment rates above 40%

increases significantly. Also note that the fraction of units in the region where mandated invest-

ment is negative decreases during the boom, since the sequence of positive shocks moves units

away from this region.

The convex curves in Figure 4 depict the state-dependent adjustment hazard; that is, the

probability of adjusting conditional on mandated investment. It is clear that the probability

of adjusting increases with the (absolute) value of mandated investment. This is the ‘increas-

ing hazard property’ described in Caballero and Engel (1993a). The convexity of the estimated

state-dependent adjustment hazards implies that the probability that a shock induces a micro

unit to adjust is larger for units with larger values of mandated investment. Since units move

into the region with a higher slope of the adjustment hazard during the boom, aggregate in-

vestment becomes more responsive. This effect is further compounded by the fact that the

adjustment hazard shifts upward as the boom proceeds, although this mechanism is small.

In summary, the decline in the strength of PE-smoothing during the boom (and hence the

larger response to shocks) results mainly from the rise in the share of agents that adjust to fur-

ther shocks. This is in contrast with the frictionless (and Calvo style) models where the only

margin of adjustment is the average size of these adjustments. This is shown in Figure 5, which

decomposes the time path of the responsiveness index of the lumpy model into two compo-

nents: one that reflects the response of the fraction of adjusters (the extensive margin) and

another that captures the response of average adjustments of those who adjust (the intensive

margin). It is apparent that most of the change in the responsiveness index is accounted for by
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Figure 5: Decomposition of Responsiveness Index: Intensive and Extensive Margins
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variations in the fraction of adjusters, that is, by the extensive margin.

Figure 6: Decomposition of I /K into Intensive and Extensive Margins
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The importance of fluctuations in the fraction of adjusters is also apparent in the decompo-

sition of the path of the aggregate investment rate into the contributions from the fluctuation

of the fraction of adjusters and the fluctuation of the average size of adjustments, as shown in

Figure 6. Both series are in log-deviations from their average values. This is consistent with

what Doms and Dunne (1998) documented for establishment level investment in the U.S. and

Gourio and Kashyap (2007) for the U.S. and Chile, where the fraction of units undergoing ma-

jor investment episodes accounts for a much higher share of aggregate (manufacturing in their

case) investment than the average size of their investment.29

29Doms and Dunne (1998) show that the number of plants that have their highest investment in a given year has
a correlation with aggregate investment of roughly 60%. Gourio and Kashyap (2007) show in their Figure 2 that
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Next we illustrate the time variation of the investment response during the turn-of-the-

millennium boom-bust cycle. Figure 7 depicts the responses over five quarters of the baseline

lumpy model to a one standard deviation shock taking place during the peak of this cycle in the

second quarter of 2000 and the trough in the first quarter of 2003, normalized by the average im-

pulse response upon impact over the entire sample. The response of investment to a stimulus

(e.g., an investment credit) varies systematically over the cycle, being least responsive during a

slowdown. Using a linear model to gauge the effect of a stimulus is likely to overestimate the

investment response during a downturn, by approximately 20%. This is because the response

to a sequence of average shocks, which corresponds to the standard impulse response function

calculated for a linear model, is in between both cases and fails to capture the significant time

variation of the impulse responses in a world with lumpy investment.

Figure 7: Impulse Responses of the Aggregate Investment Rate in the 2000 Boom-Bust Cycle
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We end this section by analyzing the role of the maintenance parameter in determining ag-

gregate investment dynamics. As discussed in Section 3.2, the magnitude of adjustment costs

decreases with χ, while the extent to which the investment response varies over the cycle in-

creases with χ. The insights we have gained earlier in this section provide an explanation for

these findings.

The negative correlation between adjustment costs and maintenance follows from the fact

that a higher maintenance parameter lowers the effective drift of mandated investment, de-

fined as depreciation that is not necessarily undone in a given period. Without maintenance,

the drift dominates over microeconomic uncertainty shocks and the cross section of mandated

investment is closer to the Caplin and Spulber extreme where there is no PE-smoothing (see

Caballero and Engel, 2007). Figure 8 shows the average cross-section distribution of mandated

investment for our baseline model and for the model with χ = 0. The former is clearly farther

aggregate investment is mainly driven by investment spikes and those to a large degree are accounted for by the
fraction of units undergoing major investment episodes.
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away from the Caplin-Spulber uniform limit, leaving more space for PE-smoothing. Thus, in

order to keep PE-smoothing constant as we reduce the value of the maintenance parameters,

we need to compensate it by increasing the adjustment cost.

Figure 8: Ergodic cross-section: Zero and Baseline Maintenance
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Note, however, that the compensation via an increase in adjustment costs is not enough

to preserve the volatility of the impulse response as we drop maintenance (see Table 4), since

this feature is more sensitive to the shape of the cross section distribution. However, Figure 9

shows that even with zero maintenance, the responsiveness index of the lumpy economy varies

considerably more than in the frictionless economy.

Figure 9: Time Paths of the Responsiveness Index - Lower Maintenance
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5 Final Remarks

This paper begins by presenting time series evidence showing that the impulse response func-

tion for U.S. investment is history dependent: investment responds more to a given shock dur-

ing persistent booms than during slumps.

Next we argue that it is important to identify the relative contribution of partial and general

equilibrium forces in smoothing the impact of shocks on aggregate variables. In particular, in

the case of investment models with lumpy capital adjustment we find that only models that

allow a non-trivial role for partial equilibrium smoothing can match the time series evidence

on history dependent impulse responses.

Finally, we show that the reason why models that add realistic lumpy capital adjustment to

an otherwise standard RBC model generate procyclical impulse responses is that, relative to the

standard RBC model, in the lumpy models investment booms feed into themselves and lead to

significantly larger capital accumulation following a string of positive shocks. During busts, on

the other hand, the economy is largely unresponsive to positive shocks. These are exactly the

patterns we observe in U.S. aggregate data.
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A Parameter and Data Appendix

A.1 Parameters

Table 8 summarizes the common parameters of the models explored in the paper:

Table 8: COMMON PARAMETERS

Calibration ρA ρS = ρI σS σI δ γ β θ ν

Quarterly 0.9500 0.8612 0.0273 0.0472 0.0220 1.0040 0.9942 0.1800 0.6400
Yearly 0.8145 0.5500 0.0501 0.0865 0.0880 1.0160 0.9770 0.1800 0.6400

Persistence parameters have the following relation between quarterly and annually: ρq =
ρ0.25

y (the same holds true for β). For standard deviations the following relationship holds: σq =
σy√

1+ρq+ρ2
q+ρ3

q

. For ρS and σS the yearly parameters are primitive because of the merely annual

availability of sectoral data. Notice that for the yearly specification
√
σ2

S +σ2
I = 0.1. Finally, the

production function for quarterly output is one fourth of the one for yearly output.

The calibration of the other parameters, σA,χ, ξ̄ and A is explained in Section 3. When we

refer in the main text to a quarterly calibration (our benchmark models), then we use – given

the quarterly parameters in the table above – σA and ξ̄ to match jointly the standard deviation

of the quarterly aggregate investment rate and the standard deviation of the yearly sectoral in-

vestment rate, which is aggregated up over four quarters in the sectoral simulations (we do not

have quarterly sectoral data). This amounts to σA = 0.0080 for the baseline lumpy model and

σA = 0.0051 for its frictionless counterpart. When we refer to a yearly calibration, then we use

– given the yearly parameters in the table above – σA and ξ̄ to match jointly the standard de-

viation of the yearly aggregate investment rate nd the standard deviation of the yearly sectoral

investment rate. This amounts to σA = 0.0186 for the baseline lumpy model and σA = 0.0120

for its frictionless counterpart. The parameter that governs conditional heteroscedasticity, χ, is

calibrated only for the quarterly specifications, because we estimate conditional heteroscedas-

ticity on quarterly aggregate data to have enough data points to detect possible nonlinearities.

A.2 Aggregate Data

Since they are not readily available from standard sources, we construct quarterly series of the

aggregate investment rate using investment and capital data from the national account and

fixed asset tables, available from the Bureau of Economic Analysis (BEA). The time horizon is
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1960:I–2005:IV. The quarterly aggregate investment rate in period t is defined as I Q,real
t /K Q,real

t−1 ,

where the denominator is the real capital stock at the end of period t −1 and the numerator is

real investment in period t .

The information we used is (a) nominal annual private fixed nonresidential investment, I Y ,

from table 1.1.5 Gross Domestic Product line 9; (b) the annual private nonresidential capital

stock at year-end prices, K̃ Y , from table 1.1 Fixed Assets and Consumer Durable Goods line 4;

(c) nominal annual private nonresidential depreciation, DY , from table 1.3 Fixed Assets and

Consumer Durable Goods line 4; (d) quarterly nominal fixed nonresidential investment sea-

sonally adjusted at annual rates, Ĩ Q , from table 1.1.5 Gross Domestic Product line 9; and (e)

the quarterly implicit price deflator of nonresidential investment, PQ , from table 1.1.9 Gross

Domestic Product line 9.

Quarterly figures for investment are obtained as follows. Since seasonally adjusted quarterly

nominal investment does not add up to annual nominal investment, we impose this adding up

constraint by calculating nominal investment in quarter t of year y as I Q
t = (I Y

y /
∑

t∈y Ĩ Q
t )Ĩ Q

t ,

where y denotes both the year and all quarters in that year. Real investment is then calculated

as, I Q,real
t = I Q

t /PQ
t .

To calculate the quarterly real capital stock we proceed as follows. Let πt denote quarterly

investment price inflation between period t −1 and t , which is obtained from the implicit price

deflator data by 1 +πt = PQ
t /PQ

t−1. We assume that annual depreciation figures reported by

the BEA are at average prices of the year. Quarterly depreciation series are constructed using

nominal annual depreciation and quarterly investment inflation, under the assumptions that

quarterly nominal depreciation numbers add up to annual figures and that real depreciation is

the same for every quarter of a given year. That is, nominal depreciation in the four quarters of

a year, denoted D1,D2,D3,D4, are given by,

D4 = D3(1+π4) = D2(1+π3)(1+π4) = D1(1+π2)(1+π3)(1+π4),

DY = D1 +D2 +D3 +D4,

where DY denotes total depreciation during that year. To compute quarterly nominal capital

stocks, K Q
t , during the first three quarters we use the following identity:

K Q
t = K Q

t−1(1+πt )+ I Q
t −DQ

t ,

where all variables are nominal. For fourth quarter capital stocks we use the annual end-of-

year data. Year-end prices reported by the BEA are the average of fourth-quarter prices in the

current year and first-quarter prices in the following year, thus nominal end-of-year capital,
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K Q
4 , for any given year is obtained from K Q

4 = 2PQ
4 K̃ Y /(PQ

4 +PQ
1′ ), where PQ

1′ corresponds to the

nominal price of investment in the first-quarter of next year. Real capital is then calculated as,

K Q,real
t = K Q

t /PQ
t .

As Figure 10 shows (the vertical lines denote NBER business cycle dates), the aggregate in-

vestment rate does not appear to exhibit any trend, which is why we do not filter any statistics

related to it (both for real and simulated data).

Figure 10: The Quarterly Aggregate Investment Rate
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Table 9 summarizes statistics of the aggregate investment rate:30

Table 9: AGGREGATE INVESTMENT RATE

Mean STD Persistence Max Min
Quarterly 0.026 0.0023 0.96 0.031 0.022
Yearly 0.104 0.0098 0.73 0.125 0.086

A.3 Sectoral Data

For sectoral data the best available source is the NBER manufacturing data set, publicly avail-

able on the NBER website. It contains yearly 4-digit industry data for the manufacturing sector,

30The maximum is achieved in 2000:II, the minimum in 1961:I.
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according to the SIC-87 classification. We look at the years 1960-1996, later years are not avail-

able. We take out industry 3292, the asbestos products, because this sector essentially dies out

in the nineties. This leaves us with 458 4-digit industries altogether.

Since the sectoral model analysis has to (a) be isolated from general equilibrium effects, and

(b) contain a large number of production units, we take the 3-digit level as the best compromise

aggregation level. This leaves us with 140 industries.31 Hence, we sum employment levels, real

capital, nominal investment and nominal value added onto the 3-digit level. The deflator for

investment is aggregated by a weighted sum (weighted by investment). Value added is deflated

by the GDP deflator instead of the sectoral deflators for shipments (the data do not contain sep-

arate deflators for value added). We do this, because our model does not allow for relative price

movements between sectors, so by deflating sectoral value added with the GDP deflator the

resulting Solow residual is essentially a composite of true changes in sectoral technology and

relative price movements. Since value added and deflators are negatively correlated, we would

otherwise overestimate the volatility of sectoral innovations and thus overcalibrate adjustment

costs.32

TFP-Calculation: Since our model is about value added production as opposed to output

production—we do not model utilization of materials and energy—we do not use the TFP-series

in the data set, which are based on a production function for output. Rather, we use a produc-

tion function for real value added in employment and real capital with payroll as a fraction of

value added as the employment share, and the residual as capital share, and perform a standard

Solow residual calculation for each industry separately.

Next, in order to extract the residual industry-specific and uncorrelated-with-the-aggregate

component for each industry, we regress each industry time series of logged Solow residuals on

the time series of the value added-weighted cross-sectional average of logged Solow residuals

and a constant. Since the residuals of this regression still contain sector-specific effects, but

our model features ex-ante homogenous sectors, we take out a deterministic quadratic trend

on these residuals for each sector. We use a deterministic quadratic trend because it makes

persistence and volatility of the estimated residuals smaller than with a linear trend or no de-

trending. This is a conservative approach for our purposes, as this will make, ceteris paribus,

the calibrated adjustment costs and therefore aggregate nonlinearities smaller. Not detrending

the sectoral Solow residuals would increase both annual persistence and the annual standard

deviation of the sectoral shock innovation from 0.55 to 0.65, and from 0.0501 to 0.0518, respec-

31Aggregating to the 2-digit levels leaves us with 20 industries.
32Indeed, using a weighted sum of 3-digit level value added deflators instead of the GDP deflator would increase

the standard deviation of the sectoral shock innovation from the 0.0501 we are using to 0.0564 and the persistence
of sectoral technology from 0.55 to 0.61, other things being equal. We thank Julia Thomas for this suggestion.
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tively. The residuals of this trend regression are then taken as the pure sectoral Solow residual

series. By construction, they are uncorrelated with the cross-sectional average series. We then

estimate an AR(1)-specification for each of these series, and, to come up with a single value for

σS and ρS , set σS equal to the value-added-weighted average of the estimated standard devia-

tions of the corresponding innovations, which results in σS = 0.0501 (annual), and ρS equal to

the value-added-weighted average of the estimated first-order autocorrelation, which leads to

ρS = 0.55 (annual).

Since this computation is subject to substantial measurement error and somewhat arbitrary

choices, we perform a number of robustness checks: 1) We fix the employment share and capi-

tal share to ν= 0.64 and θ = 0.18, as in our model parametrization for all industries. 2) Instead

of using an OLS projection onto the cross-sectional mean, we simply subtract the latter. 3) We

look at unweighted means. 4) We look at medians instead of means, again weighted and un-

weighted. The resulting numbers remain in the ballpark of the parameters we use (see Table 16

in Appendix B.4 for a robustness analysis with some of these alternative choices).

Calculation of I/K-Moments: To extract a pure sectoral component of the time series of the

industry investment rate, which like the aggregate data includes equipment and structures, we

perform the same regressions that were used for TFP-calculation, except that we use a deter-

ministic linear trend to extract sector specific effects. A quadratic detrending of the driving

force and a linear detrending for the outcome variable is a conservative approach, as it will

make calibrated adjustment costs and aggregate nonlinearities smaller. We do not log or filter

the investment rate series. The common component we regress the sectoral investment rate

series on is now a capital-weighted average of the industry investment rates. Again, we per-

form robustness checks with fairly stable results. The resulting standard deviation of sectoral

investment rates – our target of calibration – is 0.0163.33

Data for Different Digit Levels: Finally, Table 10 provides information on the number of es-

tablishments per sector and the size of each sector within the U.S. economy for the 2-digit,

3-digit and 4-digit levels.34 It justifies our choice to use 3-digit data in the baseline calibration.

The mean and median (across industries) number of establishments in the 3-digit indus-

tries are 2,671 and 1,147, respectively. While at the 4-digit level industries still contain a fairly

large number of establishments on average, the continuum assumption is certainly more justi-

fiable for the 3-digit level. Conversely, the across industries average fraction of industry estab-

lishments over the number of total establishments in the U.S. is 0.04% at the 3-digit level, the

33Their persistence is 0.55.
34We use the County Business Pattern data from 1996 to generate the numbers in this table.
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Table 10: SUMMARY STATISTICS FOR MANUFACTURING ESTABLISHMENTS

Mean# Est. Median# Est. Mean Frac. Est. Median Frac. Est. Max. Frac. Est.
2-digit 19041 14455 0.28% 0.21% 0.94%
3-digit 2671 1147 0.04% 0.02% 0.51%
4-digit 780 333 0.01% 0.00% 0.38%

median 0.02% and the maximum 0.51%. In other words, the manufacturing industry with the

largest number of establishments has a share of half a per cent in the total number of U.S. es-

tablishments.35 The table thus shows that the choice of the 3-digit level is a good compromise

between our two assumptions: small enough to not have general equilibrium impacts and large

enough to justify the assumption of a large number of units. Nevertheless, in Appendix B.4 we

report calibration results also for the 2-digit and 4-digit levels and show that our results do not

hinge on this choice.

B Conditional Heteroscedasticity and Aggregate Investment

In this appendix we first present time series evidence for conditional heteroscedasticity in ag-

gregate U.S. investment to capital ratios. Then we explain how we calibrated the maintenance

parameter using this feature of the data.

B.1 Time series models

We consider two stationary time series models within the ARCH family to explore whether ag-

gregate investment exhibits the kind of heteroscedasticity predicted by Ss-type models, namely

that investment responds more to a shock during a boom than during a slump. Both models

assume that

xt =
p∑

j=1
φ j xt− j +σt et , (17)

where xt ≡ It /Kt denotes the investment to capital ratio, the et are i.i.d. with zero mean and

unit variance, and σt is a simple function of recent values of xt as summarized by the index

x̄k
t−1 ≡

1

k

k∑
j=1

xt− j . (18)

35These numbers would be, respectively, 0.07%, 0.03% and 9%, had we used the average fraction of industry
establishments over the number of total establishments in the manufacturing sector. Had we used share in total
U.S. employment as our metric, the numbers for the 3-digit sector would have been: 0.12%, 0.07% and 0.76%.
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For model 1 we stipulate

σt =α1 +η1x̄k
t−1, (19)

while for model 2 we posit

σ2
t =α2 +η2x̄k

t−1. (20)

When η1 = η2 = 0, the above models simplify to a standard autoregressive time series, with an

impulse response that does not vary over time.

It follows from (17) that the impulse response of x to e upon impact at time t , denoted by

IRF0,t , is equal to σt . Hence:

IRF0,t =


α1 +η1x̄k

t−1, for model 1;

√
α2 +η2x̄k

t−1, for model 2.

The models with lumpy adjustment developed in this paper (and earlier models such as Ca-

ballero and Engel, 1999) predict positive values for η1 and η2. The reason is that, as shown in

Figure 4 in the main text, in these models the cross-section of mandated investment concen-

trates in a region with a steeper likelihood of adjusting when recent investment has been high,

which implies that investment becomes more responsive to shocks during these times.

B.2 Estimation and Results

Assume observations for xt are available for t = 1, ...,T , and denote by pmax and kmax the largest

values considered for p and k in (17) and (18), respectively. For all pairs (p,k) with p ≤ pmax

and k ≤ kmax we estimate an AR(p) using OLS, and then use the residuals from this regression,

denoted εt , to estimate α and η via OLS from:36

Model 1: |εt | =
√

2
π

(
α1 +η1x̄k

t−1

)+error,

Model 2: ε2
t = α2 +η2x̄k

t−1 +error.
(21)

We choose the optimal values for p and k, denoted by p∗ and k∗, using the Akaike Information

Criterion (AIC).

36The first equation is based on

E[|εt |
∣∣x̄k

t−1] =
√

2

π

(
α1 +η1x̄k

t−1

)
,

while the second equation comes from
E[ε2

t

∣∣x̄k
t−1] =α2 +η2x̄k

t−1.

Also note that we use the same number of observations when estimating all regressions: T −max(pmax,kmax).
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Table 11 presents the estimates obtained for both models, for U.S. private, fixed, nonresi-

dential investment, and for equipment and structures separately. The frequency is quarterly,

from 1960:I to 2005:IV. We use pmax = kmax = 12.

The first and second rows report the optimal values for p and k. The following seven rows

report statistics related to the magnitude and significance of the parameter that captures het-

eroscedasticity and time-variation in impulse responses, η. The third row has the point estimate

for η and the fourth row the corresponding t-statistic, obtained from OLS estimates for (21). The

latter may overstate the significance of η, since it ignores variations in the first stage regressions

that determine the autoregressive order, p∗. For this reason we use 10,000 bootstrap simula-

tions for the investment rate series, starting from our estimates for the et s in (17) and (18), to

provide an alternative measure of the precision of our estimates for η.37 The fifth row presents

the p-values we obtain for η> 0 via bootstrap simulations, we report one-sided p-values since

Ss-type models predict η> 0. The last 4 rows present measures for the range of values taken by

the estimated impulse response upon impact: σmax, and σmin denote the largest and smallest

heteroscedasticity estimates over the sample considered (172 observations), σp the p-th per-

centile. We sign the range estimates by the estimated sign of η.

Table 11: Evidence of heteroscedasticity - U.S. Investment

Series: All All Equip Equip Str Str
Model: 1 2 1 2 1 2
p∗: 6 6 7 7 6 6
k∗: 6 6 8 8 2 2
η×103: 45.93 0.03731 30.62 0.05380 39.95 0.02581
t-η: 3.121 2.496 2.089 1.724 4.097 3.245
p-value(η> 0)-bootstrap: 0.0088 0.0236 0.0375 0.0742 0.0043 0.0094
±log(σmax/σmin): 0.7367 0.5933 0.5521 0.4395 1.1167 1.1169
±log(σ95/σ5): 0.6118 0.4816 0.4520 0.3547 0.9194 0.8894
±log(σ90/σ10): 0.5203 0.4082 0.3355 0.2254 0.8003 0.7403
no. obs. lhs. 1st and 2nd reg.: 172 172 172 172 172 172

Table 11 shows that nonresidential investment exhibits significant (both statistically and

economically) heteroscedasticity for both models. This is also the case for structures, and for

equipment under Model 1. The range of heteroscedasticity values implied by the estimated

models is large. For example, the estimates for model 2 imply that the 95th percentile is 61.9%

larger (e0.4816 ' 1.619) than the 5th percentile.

37For each series generated via bootstrap we estimate the pmax ×kmax models and determine the optimal values
for p, k and, most important, η.

35



Table 12 shows the estimates we obtain when applying the methodology described above

to the cyclical component of log-GDP. We consider the three most commonly used filters to

detrend GDP: the HP-1600 filter, the Baxter-King’s bandpass filter and first-differences. By con-

trast with investment rates, there is no evidence of the heteroscedastic behavior predicted by

Ss-type models for GDP, in fact, in 3 out of 6 cases considered the estimated value for η has

the wrong sign. This suggests that it is not the shocks, which presumably affect both invest-

ment and GDP, that drive our heteroscedasticity findings for investment, but the mechanism

that transmits these shocks into aggregate investment.

Table 12: Evidence of heteroscedasticity: U.S. GDP

Detrending: HP HP BK BK Diff Diff
Model: 1 2 1 2 1 2
p∗: 12 5 2 7 2 2
k∗: 10 10 12 2 2 7
η×103: 60.07 1.135 32.25 −0.113 −117.5 −4.012
t-η: 1.3937 1.4729 1.4054 −0.9021 −1.5291 −1.8326
p-value(η> 0)-bootstrap: 0.173 0.140 0.224 0.740 0.867 0.938
no. obs. lhs. 1st and 2nd reg.: 172 172 172 172 172 172

The time series models (19) and (20) provide simple and robust approaches to test for the

presence of conditional heteroscedasticity. More sophisticated options can be used as well. For

example, instead of assuming the parametric relationships in (19) and (20), we could allow for

a more general expression of the form σt = h(x̄k
t−1), where h is estimated non-parametrically.

Figure 1 in the introduction plots the estimate we obtain for h (normalized by the average fitted

value for σt ) using p = k = 6, a Gaussian kernel, and cross-validation to determine the appro-

priate bandwidth.

B.3 Calibrating the Maintenance Parameter

To choose parameter values that match the heteroscedasticity present in aggregate U.S. invest-

ment, it is useful to summarize the estimated conditional heteroscedasticity schedules (19) and

(20) by one statistic. We do this via the signed log-ratio of the 95th and 5th percentile of the

fitted values for σ. Our calibration strategy is akin to the indirect inference approach proposed

by Smith (1993), since we match a time-series moment informed by our DSGE model. We work

with model 2 and consider p = 1, because the shocks in the DSGE model are AR(1), and k = 1.

This is the time series model in Figures 2 and 3.
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Table 13 reports estimates of the heteroscedasticity statistic for the frictionless model and

the models we considered when calibrating the maintenance parameter χ. The first column

reports the value for the range statistic in the actual U.S. investment series. The second column

reports the value for a model where capital can be adjusted at no cost (‘frictionless model’).

Columns 3 through 9 consider various values for the maintenance parameter. In each case the

simulated model matches the volatility of sectoral and aggregate investment. For each value of

χ we generated a large number of time series of aggregate investment to capital ratios of the

same length as the U.S. investment series in our data. We then estimated the range statistic for

these series — Table 13 reports the average values.

It follows from the first row of Table 13 that our models with lumpy adjustment match the

conditional heteroscedasticity in the actual data much better than a frictionless model. It also

follows from the first row that a maintenance parameter of 0.50 generates a first moment of

0.3021 for the range statistic, which is close to the estimated value of 0.2901. We therefore

choose χ= 0.50 for our DSGE model with lumpy capital adjustment.

Table 13: HETEROSCEDASTICITY STATISTIC AND MAINTENANCE PARAMETER

χ

Statistic U.S. I /K frictionless 0 0.10 0.20 0.30 0.40 0.50 0.60

±log(σ95/σ5) 0.3021 0.0539 0.1830 0.1955 0.2095 0.2261 0.2539 0.2901 0.3207

B.4 Robustness

This section addresses various issues related to the robustness of our calibration. First we show

that using alternative moments to summarize the range of heteroscedasticity values does not

affect our findings. Second, we show that had we used model 1 instead of model 2 would have

biased our results slightly against finding large conditional heteroscedasticity in the data. Third,

we show that our sectoral calibration choices do not drive the results. Specifically, we study ro-

bustness to using 2-digit and 4-digit data to compute the statistics for the sectoral Solow resid-

uals and the investment rates we use. Fourth, we also discuss robustness to how we detrend

sectoral data. We show that using a weighted median as opposed to a weighted average to

aggregate sectoral moments leaves the results unaltered. And finally, we experiment with the

choice for the total annual standard deviation production units face, studying cases with 0.075

and 0.15, compared to our baseline choice of 0.10.

Table 14 shows the implied values for χ for alternative definitions for the heteroscedastic-
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ity range (log-ratio for 90th and 10th percentile, and log-ratio for largest and smallest values

over the 184 quarters considered). It shows that χ = 0.50 slightly overestimates the volatility

of the responsiveness index, if we use the ratio of the maximum to minimum index – the 50%

mentioned in the introduction and slightly underestimates it, had we use the ratio of the 90 per-

centile to the 10 percentile. But clearly, all calibration targets are close, whereas the frictionless

and Khan-Thomas models cannot match conditional heteroscedasticity independently of how

it is defined.

Table 14: HETEROSCEDASTICITY RANGE

Model log(σ95/σ5) log(σ90/σ10) log(σmax/σmin)
Data 0.3021 0.2558 0.3841
This paper: 0.2901 0.2183 0.4063
Frictionless: 0.0539 0.0405 0.0844
Khan-Thomas (2008): 0.0468 0.0391 0.0675

Table 15: HETEROSCEDASTICITY RANGE - TIME SERIES MODEL 1

Model log(σ95/σ5) log(σ90/σ10) log(σmax/σmin)
Data 0.3175 0.2689 0.3964
This paper: 0.2880 0.2184 0.4008
Frictionless: 0.0649 0.0493 0.0909
Implied χ 0.60 >0.60 0.50

Table 15 shows that had we used Model 1 in the conditional heteroscedasticity regression,

we would have found a slightly stronger variation of the responsiveness index in the data, by

50% (e0.3964 ' 1.49), and, consequently, the calibrated maintenance parameter would have been

higher.

We now go back to the calibration based on Model 2 and check robustness to the choices

we made in obtaining the sectoral statistics we use in the calibration. Table 16 shows that our

baseline calibrated value for the maintenance parameter, χ = 0.5, is robust to these choices.

Also, in any of these cases the frictionless model features a heteroscedasticity range around

0.05, well below the data’s 0.3021.

38



Table 16: ROBUSTNESS - CALIBRATION

Specification Cond. Adj. Costs/ Calibrated σS ρS Target Sectoral log(σ95/σ5)
Unit’s Output χ I/K Volatility FL

Baseline 3.6% 0.50 0.0273 0.8612 0.0163 0.0539
Lin. detr. Solow res. 20.2% 0.40 0.0276 0.8979 0.0163 0.0537
Quadr. detr. I /K 4.4% 0.50 0.0273 0.8612 0.0152 0.0539
2-digit Data 7.4% 0.50 0.0166 0.8764 0.0098 0.0536
4-digit Data 1.4% >0.60 0.0369 0.8492 0.0226 0.0539
Weighted Median 5.7% 0.50 0.0244 0.8727 0.0145 0.0537
Total σ= 0.075 3.3% 0.50 0.0273 0.8612 0.0163 0.0538
Total σ= 0.15 2.9% >0.60 0.0273 0.8612 0.0163 0.0547

C Numerical Appendix

In this appendix, we describe in detail the numerical implementation of the model computa-

tion. Unless otherwise stated, the numerical specifications refer to the baseline calibration in

the main text, although most of them are common across all models.

C.1 Decision Problem

Given the assumptions we made in the main paper: 1) ρS = ρI = ρ, and 2) approximating the

distribution µ by the aggregate capital stock, k̄, the dynamic programming problem has a 4-

dimensional state space: (k, k̄, z,ε). Since the employment problem has an analytical solution,

there is essentially just one continuous control, k ′.
We note that for all partial equilibrium computations the dimension of the state space col-

lapses to three, k̄ is no longer needed to compute prices and aggregate movements. Instead,

we follow KT in fixing the intertemporal price and the real wage at their average levels from the

general equilibrium simulations.

Since we allow for a continuous control, k, and k̄ and z can take on any value continuously,

we can only compute the value function exactly at the grid points above and interpolate for

in-between values. This is done by using a multidimensional cubic splines procedure, with a

so-called “not-a-knot”-condition to address the large number of degrees of freedom problem,

when using splines (see Judd, 1998). We compute the solution by value function iteration, us-

ing 20 steps of policy improvement after each actual optimization procedure. The optimum is

found by using a golden section search. Upon convergence, we check single-peakedness of the

objective function, to guarantee that the golden section search is reasonable.
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Table 17: Assessing agents’ forecasting rules for capital

FL Baseline Baseline-SKEW
ak̄ 0.0065 0.0021 0.0112
bk̄ 0.9061 0.9473 0.9388
ck̄ 0.2199 0.1184 0.1106
dk̄ NaN NaN 0.0075
ek̄ NaN NaN -0.0008
R2 1.0000 0.9999 1.0000
SE 0.0000 0.003 0.0001
MAD(%) 0.09 0.61 0.34
MSE(%) 0.04 0.30 0.14
Correl. 1.0000 0.9956 0.9992

C.2 Equilibrium Simulation

For the calibration of the general equilibrium models we draw one random series for the aggre-

gate technology level and fix it across models. We use T = 600 and discard the first 100 obser-

vations. For computing the conditional heteroscedasticity in the model simulations we use a

much longer simulation horizon of T = 10000. We find that, generally, the statistics are robust to

T . We start from an arbitrary individual capital distribution and the stationary distribution for

the combined productivity level. The model economies typically settle fast into their stochastic

steady state after roughly 50 observations. Since with idiosyncratic shocks, adjustment costs

and necessary maintenance some production unit may not adjust for a very long time, we take

out any individual capital stock in the distribution that has a marginal weight below 10−10, in

order to save on memory. We re-scale the remaining distribution proportionally.

As in the production unit’s decision problem, we use a golden section search to find the

optimal target capital level, given p. We find the market clearing intertemporal price, using a

combination of bisection, secant and inverse quadratic interpolation methods. Precision of the

market-clearing outcome is better than 10−7.

To further assess the quality of the assumed log-linear equilibrium rules, we perform the

following simulation: for each point in the T = 500 (we discard the first 100 observations) time

series, we iterate for a time series of T̃ = 100 aggregate capital and the intertemporal price for-

ward, using only the equilibrium rules and assuming the actual time path for aggregate tech-

nology. We then compare the aggregate capital and p after T̃ steps with the actually simulated

ones, when the equilibrium price was updated at each step. We then compute maximum abso-

lute percentage deviations, mean squared percentage deviations, and the correlation between

the simulated values and the out-of-sample forecasts. Tables 17 and 18 summarize the numer-
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Table 18: Assessing agents’ forecasting rules for p

FL Baseline Baseline-SKEW
ap 1.8438 1.8489 1.8748
bp -0.3357 -0.2442 -0.2701
cp -0.5836 -0.8020 -0.8215
dp NaN NaN 0.0213
ep NaN NaN -0.0031
R2 1.000 0.9992 0.9999
SE 0.0000 0.0006 0.0002
MAD(%) 0.02 0.19 0.11
MSE(%) 0.01 0.06 0.03
Correl. 1.000 0.9997 0.9999

ical results for each model. The rows contain: the coefficients of the log-linear regression, its

R2 and standard error and the three above measures that assess the out-of-sample quality of

the equilibrium rules. They assess the log-linear approximation for future capital and current

p, respectively. Baseline-SKEW refers to our baseline calibration, where agents use additionally

the log standard deviation and skewness of the capital distribution for forecasting.

Table 17 shows that there exists a good log-linear approximation for aggregate capital as a

function of last period’s capital and the current aggregate shock. This may seem surprising in

light of the time-varying impulse response functions we described in the main text. However,

the numbers also show that in particular out-of-sample forecasts improve, when higher mo-

ments of the capital distribution are introduced. Furthermore, as we argue next, the goodness-

of-fit for an equation analogous to (11a) and (11b), but with the aggregate investment rate as

the dependent variable, is worse, even though the poorer fit has no bearing on aggregate invest-

ment dynamics.

Table 19: Assessing agents’ forecasting rules for I /K

Highest moment R2 Autocorrelation

all 1st quart. 2nd quart. 3rd quart 4th quart. average 1st 2nd
Baseline
Mean: 0.9896 0.9535 0.7859 0.7259 0.9501 0.8538 0.906 0.816
St. deviation: 0.9992 0.9947 0.9869 0.9822 0.9961 0.9900 0.922 0.846
Skewness: 0.9998 0.9986 0.9975 0.9978 0.9988 0.9982 0.919 0.841

We simulated a series of 500 observations for our baseline model, assuming that agents use
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the first, the first two and the first three moments of capital in their forecasting rules.38 We

divided the simulated series into quartiles based on the magnitude of the actual investment

rate, and calculated, for each quartile, the R2-goodness-of-fit statistic between the aggregate

investment rate series implied by the forecasting rule and the “true”aggregate investment rate

series, which we assume to be the one generated, when agents use three moments of the capital

distribution for forecasting.

Table 19 shows our results. The average (across quartiles) R2 between the log-linear ap-

proximation and the true investment rate is only 0.85 for the baseline model. This average

increases to 0.99 (0.97) when the log-standard-deviation of capital is added as a regressor, and

to well above 0.99 when the skewness statistic is included as well.39 The last two columns of

Table 19 show that the estimated first and second order autocorrelations of the investment rate

also improve significantly when using higher moments in the forecasting rules: the correspond-

ing values for the actual investment rate series are 0.919 and 0.842, respectively, for the baseline

calibration.

However, we also recomputed the evolution of the aggregate investment rate, when agents

use the rules that include higher moments of capital, and found no discernible differences

with what we obtained with the log-linear forecasting rules: the correlation coefficient between

the sample paths of I /K generated with forecasting rules with and without higher moments is

above 0.9999.

C.3 Sectoral Simulation

Underlying the sectoral simulation are four assumptions: First, we assume a large enough num-

ber of sectors. Second, we assume a large σS/si g maA ratio, so that we can compute the sec-

toral implications of our model independently of the aggregate general equilibrium calcula-

tions. This is also reflected in our treatment of the sectoral data as residual values, which are

uncorrelated with aggregate components. Third, we make use of the assumption that a sec-

tor is large enough to use a law of large numbers for the true idiosyncratic productivity shocks.

Fourth, we assume that ρS = ρI , and that sectoral and idiosyncratic productivity shocks are in-

dependent, so that we can treat sectoral and idiosyncratic uncertainty as one state variable in

the general equilibrium problem.

We start by fixing the aggregate technology level at its average level: zSS = 1. The converged

equilibrium law of motion for aggregate capital can then be used to compute the steady state

38More precisely, the first case has the log-mean of capital holdings as a regressor, the second case adds the
log-standard deviation and the third case also incorporates the skewness of capital holdings. Of course, log zt is a
regressor in all cases.

39For the frictionless model the first part of the first row would read: 0.9981, 0.9887, 0.9774, 0.9796, 0.9841, 0.9825.
And the autocorrelations for forecasted investment rates are almost identical to the ones for the actual series.
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aggregate capital level that belongs to this aggregate productivity. It is the fixed point of the

aggregate law of motion, evaluated at zSS :

k̄SS ≡ exp
ak̄

1−bk̄
.

This, in turn, leads to the steady state pSS ≡ exp(ap +bp log(k̄SS)).

Then we specify a separate grid for idiosyncratic and sectoral productivity in such a way that

all new grid points and any product of them will lie on the original 19-state grid for the com-

bined productivity, used in the general equilibrium problem. Given the equi-spaced (in logs)

nature of the combined grid this is obviously possible. Thus, the idiosyncratic grid comprises

11 grid points, and the sectoral grid 9 grid points, both equi-spaced and centered around unity.

Next, we recompute optimal target capital levels as well as gross values of investment (see

equation 12d) at zSS , k̄SS , at the 19 values for ε. By construction, these are then also the values

for any (εS ,εI )-combination. Note that we use the value functions computed from the gen-

eral equilibrium case. We draw a random series of T = 2600 for εS , which remains fixed across

all models, start from an arbitrary capital distribution and the stationary distribution for the

idiosyncratic technology level, and follow the behavior of this representative sector, using the

sectoral policy rules. The details are similar to those of the equilibrium simulation.

Finally, we test the two main assumptions on which we base our sectoral computations:

a continuum of sectors and fixing the aggregate environment at its steady state level. To this

end, we compute the equilibrium with a finite number of sectors, NS . Also, we introduce an

additional state-variable, given by: ε̄S,t ≡ ∑
i=1,...,NS log(εS,t (i )), which captures changes in the

aggregate environment, beyond the common aggregate shock. Obviously, ε̄S,t = 0,∀ t , as NS →
∞, by the law of large numbers and assuming sectoral independence. This additional aggregate

state is then integrated over by Gauss-Hermitian integration, which is facilitated by the fact

that the ε̄S,t -process is independent of the aggregate technology process (by assumption). For

computational reasons - following a large number of sectors with a large number of production

units each is considerably more onerous in a quarterly calibration than in a yearly calibration -,

we run these robustness checks for the annual equivalents of our baseline models.

We choose two different values for NS . First, 400, which roughly equals the number of 3-

digit SIC-87 sectors in the U.S. (395). Since, however, sectors are of very different size and overall

importance, and also often correlated, we decrease, secondly, NS to 100 for robustness reasons.

The resulting residual σε̄S is 0.0026 and 0.0052, respectively. Notice that in both cases σε̄S is

considerably smaller than σA = 0.0120, the σA for the annual frictionless calibration, so that we

should not expect too large an effect from this additional source of aggregate uncertainty.

The following table shows the aggregate and sectoral standard deviations for annual invest-
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ment rates for the frictionless model and our baseline lumpy model (χ= 0.5). The raw sectoral

standard deviations are shown as a capital-weighted average (the unweighted averages are only

insignificantly different). The residual sectoral standard deviations are shown with the same

filtering operations as discussed in Appendix A.3.

Table 20: ROBUSTNESS OF THE SECTORAL COMPUTATION

Model: FL FL Lumpy Lumpy
Number of sectors: 100 400 100 400
Aggr. St.dev. 0.0113 0.0102 0.0103 0.0099
Sect. St.dev. - raw 0.1824 0.1838 0.0190 0.0188
Sect. St.dev. - res. 0.1819 0.1834 0.0159 0.0160

The first important observation is that the numbers obtained here are not much different

from what we have obtained in the simplified computation, which is in particular true for the

lumpy model. Specifically, the frictionless model continues to fail to match observed sectoral

volatility by an order of magnitude. And, secondly, the numbers deviate in the expected direc-

tion: the aggregate standard deviation increases (from 0.0098), because there is an additional

aggregate shock, but only slightly so; the sectoral standard deviations decrease a little bit (from

0.0163), because now general equilibrium forces contribute also to sectoral smoothing. Overall,

our simplified sectoral simulations seem justified.

D Matching Establishment Statistics

One argument we gave for using sectoral rather than plant level data to calibrate micro frictions

is that matching micro moments may not be a robust way of pinning down microeconomic

parameters when the goal is to use these parameters to identify aggregate effects of the mech-

anism. In this appendix we provide support to this claim by showing that a straightforward

modification of the micro underpinnings of our baseline model leads to a satisfactory match of

establishment level moments. More important, the match of sectoral and aggregate moments

we obtained in the main text is unaffected by this extension. Our objective here is not to add

realism to our original model, but to illustrate the potential lack of power of using (only) plant

level data for our purpose.
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D.1 A Simple Extension

A first choice we need to make when matching the model to micro data is how many micro

units in the model correspond to one establishment. Choices by other authors have covered a

wide range, going from one to a a continuum (see footnote 15).

Two additional issues arise if we choose to model an establishment as the aggregation of

many micro units. First, we must address the extent to which shocks—both to productivity and

to adjustment costs—are correlated across units within an establishment.40 Second, we must

take a stance on the fact that establishments sell off and buy what in our model corresponds to

one or more micro units.

Next we present a simple model that incorporates both elements mentioned above. The

economy is composed of sectors (indexed by s), which are composed of establishments (in-

dexed by e), which are composed of units (indexed by u). Data are available at the establishment

level but not at the unit level. The log-productivity shock faced by unit u in establishment e in

sector s at time t is decomposed into aggregate, sectoral, establishment and unit level shocks

as follows:

log zuest = logεA
t + logεS

st + logεE
est + logεU

uest ,

where logεA
t ∼ AR(1;ρA,σA), logεS

st ∼ AR(1;ρS ,σS), logεE
est ∼ AR(1;ρE ,σE ) and logεU

uest ∼
AR(1;ρU ,σU ), and the usual orthogonality assumptions hold.41 Consistent with the assump-

tions we made in the paper, we set ρS = ρE = ρU and denote the common value by ρ.

An establishment is composed of a large number (continuum) of units. The extent to which

the behavior of units within an establishment is correlated varies with the relative importance

of σU and σE . The larger σE , the higher the correlation of productivity shocks across units and

the more coordinated their investment decisions will be. The sectoral and aggregate invest-

ment series generated by the extended model are the same as those generated by the model

developed in the main text as long as σ2
E +σ2

U = σ2
I , since all we do in this extension is group

micro units into “establishments” in a way that has no implication for sectoral aggregates. We

consider the polar cases with uncorrelated productivity shocks (σ2
U =σ2

I , σ2
E = 0) and perfectly

correlated shocks (σ2
U = 0, σ2

E = σ2
I ). The degree of coordination also depends on how corre-

lated adjustment costs are across units within an establishment; again we consider the polar

cases where adjustment costs are perfectly correlated and independent.42

Regarding the sale and purchase of micro units, we assume that in every period the capi-

40For tractability, we assume that decisions are made at the micro-unit level, not the establishment level.
41xt ∼ AR(1;ρ,σ) means that the process xt follows an AR(1) with first order autocorrelation ρ and standard

deviation of innovations equal to σ.
42There is a one-to-one match between micro units in the model and establishment level data when adjustment

costs and productivity shocks are perfectly correlated. Otherwise a continuum of model micro units correspond
to one establishment in the data.
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tal stock that is recorded at the establishment level is related to the capital stock for that unit

determined by our baseline model via

K r
est ≡ (1+τest )K m

est , (22)

where the superscripts r and m stand for “recorded” and “model”. The τ’s are i.i.d. draws from

a normal distribution with zero mean and standard deviation στ.43

The capital accumulation identity for recorded investment and (22) lead to:

I r
est = K r

es,t+1 − (1−δ)K r
est = (1+τes,t+1)K m

es,t+1 − (1+τest )(1−δ)K m
est . (23)

It follows that if the establishment sells off a fraction of the units it holds in t +1, these sales will

show up as lower (or even negative) investment in the recorded investment data.

Dividing both sides of (23) by K r
est , using (22) and denoting investment rates It /Kt by it

yields

i r
est =

(1+τes,t+1)

(1+τest )

K m
es,t+1

K m
est

− (1−δ).

Using the capital accumulation identity to express K m
es,t+1/K m

est in terms of the model’s invest-

ment rate and ignoring second order terms in τ then leads to

i r
est ≈ (1−∆τes,t+1)i m

est +∆τes,t+1(1−δ), (24)

with ∆τes,t+1 ≡ τes,t+1 −τest .

Summing up, our (admittedly simple) extension introduces three parameters —the degree

of correlation of productivity and adjustment costs across units within establishments, and the

volatility parameter for unit purchases and sales— that can be used to fit establishment level

moments without affecting the match of sectoral and aggregate statistics.

D.2 Matching Establishment Level Statistics

For the four combinations of correlation across both sources of shocks we generate a histogram

with 2,500 realizations of establishment level I /K using our model.44

Denote by fi , i = 1, ...,5 the fraction of LRD establishments that adjusted less than −20%,

between −20 and −1%, between −1% and 1%, between 1 and 20% and above 20%, respec-

43We choose a symmetric distribution so that asymmetries in the histogram of investment rates cannot be at-
tributed to this choice.

44We compute these investment rates using the approximation described in Appendix C.3 with σ2
S +σ2

E in the
role of σ2

S , and σ2
I −σ2

E in the role of σ2
I .
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tively. And denote by πi (στ) the fraction of units with adjustment in the previous bins af-

ter applying the transformation described in (24). We choose the value of στ that minimizes∑
i | fi −πi (στ)|/ fi , that is, that minimizes the average absolute deviation.

Table 21 presents our results. We consider four combinations of correlation among adjust-

ment and productivity shocks. Comparing the first four rows with the last row shows that the

match we obtain for statistics of the plant level distribution is reasonable.45 More important,

this exercise illustrates that establishment level moments may not be useful to calibrate model

parameters that play an important role determining aggregate dynamics.

Table 21: MATCHING LRD MOMENTS

Model f1 f2 f3 f4 f5 στ avge. abs.
correl. correl. deviation

adj. costs prod. shocks
0 0 .022 .040 .015 .833 .090 .074 .380
0 1 .000 .090 .046 .729 .135 .056 .377
1 0 .031 .081 .043 .696 .149 .037 .331
1 1 .000 .090 .079 .726 .105 .035 .386

Data .019 .090 .082 .622 .187 — —

45The goodness of fit is similar to that obtained by KT, which is 0.303.
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