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Abstract

Implementing a fuzzy regression discontinuity design, we estimate a local causal
effect of grade retention on juvenile crime. We assemble a novel data set that
merges administrative information on schooling and juvenile crime for the entire
population of students during the period 2007 – 2014 in Chile. Our main finding
shows robust evidence that repeating a grade in school increases the probability
of juvenile delinquency by 1.8 percentage points (pp), an increase of 37.5% of
that probability. This effect is higher for males, and twice the indicated value for
students of low socioeconomic status. We also show that grade retention increases
the probability of dropping out of school by 1.5 pp. Regarding mechanisms, our
findings suggest that the effect of grade retention on crime does not only manifest
itself indirectly as a result of its effect on dropping out. We also show that the
effect of grade retention on crime is greater when students switch schools right
after failing a grade.
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1 Introduction

Does grade retention in school make it more likely that young people will engage in

criminal activity? From an opportunity cost point of view, it seems reasonable that

students are more prone to pursue non-educational activities when they are not promoted

to the next grade in school (Lochner (2004)). Conversely, repeating a grade might

strengthen a student’s knowledge and discipline, with potential positive effects on her

outcomes. Thus, instead of representing a “cost” for students, not being promoted to

the next grade could be viewed as an “opportunity” that may help them become more

competitive in the classroom, discouraging the divergence to non-educational activities

(Jacob (2005)). This ambiguity on the potential effect of retention on crime is at the

core of the well-known “grade retention controversy”.1

An empirical settlement of this controversy should be of particular importance in

developing countries, where both the rate of students repeating grades and the rate of

juvenile crime are much higher than those observed in developed countries. While in 2012

the average rate of grade retention in primary education was 5.1% in developing countries,

that figure was 1.4% for developed countries (Institute for Statistics, UNESCO). In

Chile, although its rate was below the average of developing countries, there has been

an increase in the last decade, when the rate went from 3.1% in 1999 to 3.8% in 2012.

Regarding crime, while the incarceration rate is 145.5 inmates per 100, 000 in the OECD

countries,2 in Chile this number is 266.3

Despite the vast literature linking grade retention and youth crime,4 the evidence of

a causal effect between them is scarce, and does not exist for developing economies, as

1The “grade retention controversy” exists because of ambiguous, and even contradictory, evidence
of the effect that this measure has on some academic and socio-emotional outcomes of students. See
Holmes et al. (1989) and Jimerson (2001); see also Reschly and Christenson (2013) for a fresh look at
this controversy.

2An exception among developed countries seems to be the US, both in grade retention and crime
rate. For instance, Wu, West, and Hughes (2010) state that in Texas, during the 2003-2004 school year,
retention in first grade was 6.4%. Moreover, its incarceration rate is 710 inmates per 100, 000.

3European Institute for Crime Prevention and Control, affiliated with the United Nations (2010).
4For instance, Burdick-Will (2013), Fagan and Pabon (1990) and Hirschfield (2009), among others,

have shown how criminal activities affect some schooling outcomes, a sort of inverse of the problem
studied here. The effect of compulsory schooling laws on crime has been investigated by Lochner and
Moretti (2004), Brug̊ard and Torberg (2013) and Machin, Marie, and Vujić (2011), among others. Other
contributions have investigated how school starting age may affect crime (see Landersø, Nielsen, and
Simonsen (2016), and references therein).
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discussed later on this section. It is rarely possible to find a proper empirical setting

and dataset to overcome the potential endogeneity due to the fact that the latent out-

come –crime activity that would be observed in the absence of grade retention– and the

propensity to fail a grade are simultaneously determined.

To fill this gap, this paper estimates the causal effect of grade retention on juvenile

crime by using an exceptional database from Chile, which matches individual academic

records for all students (1st to 12th grade) with youth penal prosecution information,

also on an individual basis, during the period 2007–2014. We find robust evidence on

a (positive) local causal effect of grade retention on youth delinquency in Chile. Fur-

thermore, as a byproduct of our main investigation, new findings on the relationship

between retention and dropping out of school are also obtained. The results provide in-

formation about the mechanisms through which repeating a grade impacts the likelihood

of committing a crime during youth.

Our identification strategy relies on a discontinuity in the probability of grade reten-

tion generated by the two grade retention rules commonly applied in Chile. They are

based on the student’s scores, which range from 1 to 7, with an increment of 0.1. The

most prevalent rule employed by far, which we call “Rule I”, applies when a student

scores below 4 on two subjects (≤ 3.9) and has an average score across all subjects lower

than or equal to 4.9. Our main results are based on the use of this rule. In addition,

for the sake of completeness and to provide additional evidence supporting our main

findings, we also estimate the causal effect using the second-most prevalent retention

rule, “Rule II”, which applies when a student scores below 4 on one subject and has an

average score across all subjects lower than or equal to 4.4.

For estimation purposes, because there is evidence of manipulation around the thresh-

old in the case of the forcing variable of Rule I (the student’s second-lowest score), we

follow Barreca, Guldi, Lindo, and Waddell (2011) in implementing a donut-hole fuzzy

regression discontinuity design (FRD), where the observations in the immediate vicin-

ity of the threshold for grade repetition are removed. To correct the potential bias

due to differences in observable variables created by removing data, we complement this

donut-hole approach by slightly extending the method developed by Keele, Titiunik, and

Zubizarreta (2015) to implement an estimation procedure that combines matching with

FRD. In the case of retention Rule II, because there is no evidence of manipulation of
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the forcing variable, we follow a more standard approach to estimate the effect, which is

the FRD procedure developed by Calonico, Cattaneo, and Titiunik (2014b). Because of

its stability to different specifications and the precision of its estimations, we focus our

conclusions on the estimation magnitudes delivered by retention Rule I. However, the

results from retention Rule II are in the same direction.

Our estimates show that repeating a grade between 4th and 8th grade increases the

probability of juvenile crime by 1.8 pp, i.e., an increase of 37.5%. Moreover, we also

find that this effect is larger for students of low socioeconomic status (SES), with an

estimated effect twice that obtained for the entire population (the probability increases

3.7 pp). In terms of gender, the most affected by the policy are males, with an estimated

increase of 2.5 pp in the probability of committing a crime during the juvenile period.5

As a secondary topic, we also examine the effect of grade retention on future grade

retention and dropping out of school, both issues already studied in a series of recent con-

tributions (Roderick (1994) and Manacorda (2012); see also King, Orazem, and Paterno

(2015) for a comprehensive literature review). Using retention Rule I, we find that grade

retention in primary school decreases the probability of grade retention in subsequent

years by 5.9 pp (10.7%), but increases the probability of dropping out by 1.6 pp (23.8%).

Lastly, we also empirically study some mechanisms through which repeating a grade

impacts the likelihood of committing a crime during youth. First, we find that the effect

of grade retention on crime occurring before (or simultaneously to) dropping out is more

pronounced than the effect on crime that occurs after dropping out. Second, we show

that the effect of grade retention on crime is increased when students switch schools right

after failing a grade. The first mechanism implies that our results add value to what

we would have concluded if we had just put together two results already established in

the literature, namely, the positive effect of grade retention on dropping out (Manacorda

(2012)) and the positive effect of dropping out on juvenile crime (see, e.g., Anderson

(2014), Fagan and Pabon (1990), and Thornberry, Moore, and Christenson (1985)).

As mentioned before, the literature on the causal effect of retention on crime is scarce.

5To study the robustness of our main findings, we implement a placebo test by replicating the “donut-
hole” FRD and the FRD-matching estimations. In the last case, we consider only those students who
did not repeat the grade, comparing those who scored below the threshold with those who scored above.
These two methods do not deliver a statistically significant effect in this placebo test for any of the three
outcomes considered, namely, juvenile crime, dropping out and future grade retention.
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To the best of our knowledge, the closest paper to our investigation was provided by De-

pew and Eren (2015), who estimate the impact of grade retention (with summer school)

on juvenile delinquency (and dropping out) in Louisiana. They assemble a novel dataset

after merging administrative information on educational outcomes with the criminal

records of students attending schools in Louisiana. Then, taking advantage of the test-

based grade promotion policy that has been applied in Louisiana as of a decade ago, the

authors build an RD design, where the forcing variable is the score on a standardized test

which determines whether or not a student is promoted. Their principal conclusion is

that, for students attending eighth grade, the test-based grade retention policy decreases

the likelihood of being involved in felony offences during their youth. Although the au-

thors make a remarkable effort in identifying a causal effect of grade retention on juvenile

delinquency, they do not correct the latent manipulation that the forcing variable suffers

close to the cut-off. Indeed, the key assumption in their RD is that teachers (or someone

else in charge) do not exercise precise control over the score in the standardized test near

the cut-off point. If this holds, the variation in scores obtained at the threshold is as

good as randomized (Imbens and Lemieux (2008) and Lee and Lemieux (2010)).

Another similar study is by Cook and Kang (2016), who merge administrative data

of academic performance with the criminal records of students attending public schools

in North Carolina. They exploit the sharp RD design generated by the specific date that

establishes the minimum age for school enrollment (the cut date) and assess its effect

on a number of educational outcomes, as well as on juvenile crimes committed. Their

main findings are, first, during middle school, students born just after the cut date (the

oldest) are more likely to outperform (in math and reading) those born just before (the

youngest), and are less prone to be involved in juvenile delinquency; second, those born

before the cut date are more likely to drop out of school and commit a severe offence.

Finally, Depew and Eren (2016), exploiting the same discontinuity as in op.cit., as well

as using the aforementioned data for students attending school in Louisiana, find that

late school entry by one year decreases the frequency of juvenile delinquency for young

black females.

In summary, this paper makes three main contributions. First, together with Depew

and Eren (2015), it is one of the first that estimates a causal effect of grade retention

on juvenile crime and it is the first such evidence for a developing country, where the
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retention rates are higher. Second, by extending the method developed by Keele, Titiu-

nik, and Zubizarreta (2015) to the fuzzy RD case, we present a method that might be

useful in contexts where there is some evidence of manipulation in the forcing variable.

Third, it sheds light on the mechanisms that may explain the impact of grade retention

on juvenile crime.

This paper is organized as follows. In Section 2, we begin by describing the main

features of both the educational and criminal data. The evidence about the discontinuity

created by retention Rules I and II is also presented in this section. In Section 3, we

present the main estimation strategy using retention Rule I, namely, a methodology that

combines FRD with matching techniques. Section 4 presents our alternative strategy

using grade retention under Rule II. In Sections 5 and 6, we show the results obtained

from these two strategies. In Section 7, we present two exercises that shed light on how

grade retention may impact juvenile crime. Finally, Section 8 concludes.

2 Data and Retention’s Rules

In this section, we first describe the characteristics of our dataset and then explain how

the grade retention rules operate.

2.1 Data

We assemble administrative dataset from the Ministry of Education and the Public

Defender’s Office (Defensoŕıa Penal Pública, DPP). Among others, the DPP is the in-

stitution in Chile which provides free legal representation for all youths who have been

accused of committing a crime.

The information collected from the Ministry of Education is an administrative panel

dataset from 2002 to 2015, which, for every student in the country, indicates the school

attended every year, the grade level (and whether the student has repeated the grade),

the student’s attendance rate, some basic demographic information, and (only for 2007)

the annual average score for all subjects taken by the student (her cumulative grade point

average).6 The latter is needed to establish which students are close to the threshold for

6Hereinafter, to avoid confusion of the concept of grade (level) with grade (performance), the latter
will be referred to as “score”.
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grade repetition and it also allows us to build a more continuous measurement for the

average across all subjects.7 We merge this panel with the information on performance

on the national standardized test (Sistema de Medición de Calidad de la Educación,

SIMCE), which is taken annually by all students in the 4th grade and every other year

by all 8th grade students.

When students take the SIMCE, a survey is administered to their parents. From

these surveys, we obtain information about the mother’s and father’s education level

and family income. We focus our attention on the students who, in 2007, were in 4th

to 8th grade, attending public or subsidized schools.8 Due to their high SES and low

criminal rate, we excluded students attending private schools, which represent 8% of the

national enrollment.

The DPP’s records contain information on all youth defendants in criminal cases tried

in Chile during the period of January, 2006 to December, 2014. This database includes

information on the time of the accusation, the type of offence, and the verdict (including

the length of the sentence). In this study, we consider only juvenile criminal cases. In

order to focus on crimes that can be thought of as motivated by a cost-benefit analysis,

we omit individuals who committed the most severe crimes, such as murder or rape.9

Given that our “treatment” is grade retention in 2007, we also exclude students who

were prosecuted before 2008. Thus, in all our estimations, the students who committed

crimes are those who were prosecuted, between 2008 and 2014, for an offence with an

economic motivation.

The final dataset includes close to 640,000 students, their primary and secondary

school records and their criminal records (ages 12 to 18). This information is linked to

a large set of demographic characteristics about their families. In Group A of Table 1

we give in Section 3.1.3, it is possible to see the information at individual level that we

7For the other years, we only have the average across all subjects officially reported by the Ministry
of Education. The problem with this measurement is that it is approximated. Thus, if we had this
level of aggregation, in our estimation we would have to compare students with an average of 4.4 with
students with an average of 4.5. Then, since students have around 10 subjects, this implies comparing
students whose scores are different in all these subjects by 0.1 points on average, which would imply
facing two different groups (treated versus control). Instead, our empirical strategy, which exploits
Grade Retention Rule I, compares students who have differences in only one subject.

8We do not have SIMCE information for those students who were attending 7th grade in 2007. Thus,
most of our estimations do not consider this group.

9We do not consider as crime the juvenile criminal cases where the verdict was not guilty.
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use as independent variables, namely, whether they had repeated a grade before, their

attendance rate pre-2007, their scores on standardized tests, the level of education of

their parents, the family income, and gender. This table also shows the basic statistics

of repeaters and non-repeaters in 2007; as we discuss later, these groups are rather

different.

Regarding our dependent variables, Figures 1 and 2 show the evolution of juvenile

crime and drop-out rates across years. To simplify interpretation of the dynamics, we

only focus on the cohort of students who were attending 8th grade in 2007. To motivate

the study on the effect of grade retention on crime and dropping out, we compare the

dynamics between repeaters and non-repeaters of 2007. In the case of crime (Figure 1),

each dot represents the fraction of youth who were criminally prosecuted each year for

a first offense. Considering the 2008-2011 period, 4, 279 were prosecuted at least once,

which represents 2.3% of this cohort. A higher fraction of repeaters were prosecuted,

at 5.7% (240/4, 212). In the case of dropping out (Figure 2), while 19, 782 dropped

out at some point between 2008 and 2011, which represents 10.5% of this cohort, this

percentage increases to 34.7% (1.461/4.212) among those who repeated in 2007.

Figure 1: Percentages of students committing a crime by year

N=46

N=70
N=74

N=50

N=584 N=1101 N=1248 N=1106

0
.5

1
1.

5
2

P
er

ce
nt

ag
e 

of
 S

tu
de

nt
s 

(%
)

2008 2009 2010 2011
Year

Repeaters Non−repeaters

Note: This figure considers students who were in 8th grade in 2007,
for whom we have all the individual covariates used in our estima-
tions. These criteria leave us with 187, 611 students, 4, 212 of whom
repeated in 2007. In each dot, N represents the number of youths
who were criminally prosecuted for a first offense in that year.
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Figure 2: Percentages of students dropping out by year
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Note: This figure considers students who were in 8th grade in 2007,
for whom we have all the individual covariates used in our estima-
tions. These criteria leave us with 187, 611 students, 4, 212 of whom
repeated in 2007. In each dot, N represents the number of youths
who dropped out of school that year.

2.2 Retention Rules and Discontinuity

In order to present the grade retention rules employed in Chile, we recall that students’

scores range from 1 to 7, with an increment of 0.1.10 Using these records, the two most

prevalent rules employed to determine grade retention are scoring below 4 on two subjects

(≤ 3.9) and having an average score across all subjects lower than or equal to 4.9 (we call

this grade retention “Rule I”), and scoring below 4 on one subject and having an average

score across all subjects lower than or equal to 4.4 (grade retention “Rule II”). To have

a sense about the relevance of these rules, among the 639, 092 students for whom we

have all information considered in the application of the two rules, 9, 229 should repeat

the grade because of Rule I (but they do not meet all conditions of Rule II), 479 should

repeat the grade because of Rule II (but they do not meet all conditions of Rule I), and

7, 435 should repeat the grade because they meet the conditions for Rule I and II.

10At this stage, an important clarification is necessary. Although all schools must apply the 1-7 grading
scale, they are free to set their own grading standards, which means that scores are not comparable
across schools. This explains why in all of our estimations we compare students – below and above the
threshold – who attend the same school and the same grade. This is also why, in all the plots that we
present, we consider only students attending schools with at least one student scoring below and at least
one student scoring above the specific threshold.
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The retention rules suggest the possibility of implementing a regression discontinuity

approach to study the causal effect of grade retention on crime. To explore the disconti-

nuity due to grade retention Rule I, in Figure 3 each dot represents the grade retention

rate of all the students in a particular grade who have a specific value of the second-

lowest score. As the rule specifies, there is a strong discontinuity between scores 3.9 and

4.11 Regarding the second rule, Figure 4 shows the discontinuity due to grade retention

Rule II. In this case, each dot represents the grade retention rate of all the students in

a particular grade who have a specific value of the average scores across all subjects. As

the rule determines, there is an important discontinuity around 4.5.

Figure 3: Discontinuity due to retention Rule I

0
.2

.4
.6

.8
1

P
ro

b.
 o

f G
ra

de
 R

et
en

tio
n

3 4 5 6 7
Second−Lowest Score

Note: This figure considers only the performance in 2007 of 4th to
8th grade students attending schools which have at least one student
scoring 4 or 4.1 and at least one student scoring 3.9 or 3.8 in their
second-lowest score.

11The main reason why this is not a sharp discontinuity is that – as discussed – students who have
two scores below 4 can pass the grade as long as their average across all subjects is greater than or equal
to 5.
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Figure 4: Discontinuity due to retention Rule II
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Note: This figure considers only the performance in 2007 of 4th to
8th grade students attending schools which have at least one student
scoring more than 4.4 and at least one student scoring less than 4.5
in their average score across all subjects.

3 Estimation Strategy Using Retention Rule I

In this section, we explore the validity of implementing an FRD design that exploits

grade retention Rule I. Taking into account the the evidence of manipulation around the

threshold in the case of the forcing variable of Rule I (the student’s second-lowest score),

we present a methodology that combines FRD with matching techniques.

3.1 Validity of the RD Design: Evidence of Local Manipulation

As we discuss in the following paragraphs, there are institutional reasons and empirical

evidence to support the idea that the second-lowest score – the forcing variable – is

manipulated around the threshold. However, we present evidence that this problem could

be restricted to the scores closest to the threshold. The existence of this manipulation

problem, and its local nature, is what determines our empirical strategies to estimate

causal effects.
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3.1.1 The Density of the Forcing Variable

Figure 5 shows two histograms for the second-lowest score. Panel (a) presents the real

histogram (derived from data), while in Panel (b) a hypothetical histogram is introduced,

which is created from Panel (a) by moving a number of students from scoring 4 to

3.9. There are two lessons to be gleaned from these plots. First, there is a remarkable

discontinuity in the histogram for the second-lowest score, around the threshold (3.9−4).

Second, the discontinuity (and possibly the manipulation) seems to be limited to the

scores closest to the threshold (3.9− 4); in fact, the histogram shown in Panel (b) does

not show any evidence of discontinuity.

Figure 5: Histograms for the 2nd Lowest Score
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The first point raises reasonable doubts about the internal validity of an RD estimator

(see Lee and Lemieux (2010)), because it is arguable that teachers’ grading decisions at

the margin of repetition may not sort students randomly. The second point, which

addresses local manipulation, is in line with the incentives that teachers face. In fact,

even though the anecdotal evidence suggests that school leaders promote an upper bound

for the rate of grade retentions, and, therefore, teachers may be forced to pass students

who have a real score lower than 4, there is no reason to raise that score to a value higher

than 4.12 Moreover, if a student’s real score (a latent variable) was 3.9 and her teacher

manipulates that score to 3.8 to avoid any complaint from her parents (who might ask

12Teachers’ grading behavior is not audited to find evidence of manipulation in their grading.
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for a small increase from 3.9 to 4 to pass the grade), that would make our treatment and

control groups more comparable. The relevance of this point will be more clear when we

introduce our empirical strategy.

3.1.2 Graphical Test for Local Manipulation

We present direct evidence of local manipulation by taking advantage of the richness

of our database. Intuitively, local manipulation should imply that the mapping from

knowledge (a latent variable) to scores should be discontinuous around the threshold. In

our framework, this means there should be a discontinuity in such a mapping between

scores 3.9 and 4.

Fortunately, besides students’ grade point average (GPA) at school, we have informa-

tion on their standardized test scores (the SIMCE), where the latter can be thought of

as unbiased proxies of students’ knowledge. Thus, we can test manipulation by studying

the behavior of the mapping from SIMCE to GPA around the threshold, at each primary

school. We do so in the following steps:

1. To have the closest possible relationship between standardized tests and grade

scores, we focus on the math SIMCE and math GPA for 8th grade students.13

2. Let i index students. We run the following OLS regression for each school s:

MathSimceis = µs
0 + µs

1 ∗MathGPAis + υis.

3. We allow for a different mapping for each school, because schools may have different

standards to evaluate their students.14 Furthermore, to have enough precision in

our estimated parameters, we exclude schools with fewer than 20 students. By

doing so, we drop 1625 schools, keeping 4125 for our OLS estimations.

13To be clear, this means that the sample that we use to show local manipulation is different from
the sample that we consider in our estimations of the effect of grade retention on crime. While in the
former we only use 8th grade students and their math performance, in the latter we consider data from
4th to 8th grade and their average performance across subjects. Because we do not have standardized
tests measuring all subjects, we are constrained to show local manipulation in math and to assume that
it is also local for the other subjects.

14In Figure 12 of Appendix A, we show how µ0 (constant) and µ1 (slope) are different across schools.
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4. Given 4125 pairs of OLS estimations for µ0 and µ1, we calculate the residual for

each student i, such that:

Residualis = MathSimceis − µ̂s
0 − µ̂s

1 ∗MathGPAis.

In Figure 6, we present the mean of these residuals for each value of MathGPA. As

can be seen in this figure, and even though there are other, smaller jumps in other parts

of the math score range, there is a clear discontinuity between 3.9 and 4.

Figure 6: Test for Local Manipulation (second-lowest score)
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This simple test has clear limitations. The most important one is the assumption of

a linear relationship between knowledge (measured by the SIMCE) and school GPA.15

Indeed, this assumption is what determines the negative slope of the mean of the resid-

uals. That said, it is remarkable that, even imposing a linear relationship, the figure

shows a clear jump only between 3.9 and 4.

15Another potential limitation is to assume that the SIMCE is an unbiased measure of the student’s
knowledge. In our opinion, given the way in which the SIMCE is taken (where regular teachers are not
in the classroom during the test), there is no reason to think that SIMCE scores are manipulated.
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3.1.3 Tests Involving Covariates

To study the extent to which this manipulation could be a problem and how useful it

is to use a FRD approach in this context, Table 1 shows the differences in observables

among different groups. In Group A, we compare students who were retained in 2007

with students who were not. In this selected sample, the normalized differences in the

means of the independent variables are all economically relevant, ranging from 1.49

to 0.29.16 Moreover, all of these differences are in the same direction: the repeaters

are students with characteristics highly correlated with future criminal behavior. They

come from lower socioeconomic groups (measured by income and parents’ education),

they have lower levels of academic performance, their attendance rate is lower, and males

are overrepresented in this group.

This story contrasts to that of Group B, where we compare students who scored 3.9

in 2007 with those who scored 4, in their second-lowest subject. The stories from these

two samples differ in two ways. First, the magnitudes of the normalized differences are

remarkably smaller in Group B, where the largest normalized difference is 0.1. Second,

in Group B, the signs of the differences in observables – between the highly probable

repeaters and the rest – are in some cases in the opposite direction of those in Group

A. For instance, students scoring 3.9 have a lower mean in repetition before 2007, and

higher means in attendance in 2006 and in family income.

The comparison between these two selected samples (Groups A and B) illustrates

how much we gain by taking advantage of the discontinuity. Without an RD approach,

the initial differences between the treated and the control groups – presented in Group A

– would be too large to implement an empirical method based on controlling observables

(e.g., a type of matching) as a credible approach to estimate a causal effect. That

said, as was anticipated in the density analysis and in our test for local manipulation,

Group B shows some evidence of manipulation around the threshold, because, without

manipulation, students scoring 3.9 are expected to have worse performance and lower

socioeconomic status on average than students scoring 4, which is not always the case

with our data. Of particular note is the difference in the fraction of students who have

previously repeated. A reasonable explanation for this difference is that teachers are less

16The normalized difference in the mean is equal to X̄1−X̄2√
(Sd(X1)2+Sd(X2)2)/2

, where X̄i is the sample

mean for group i and Sd(Xi)
2 is the estimated variance for group i.
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demanding with students who have previously failed a grade, which creates a non-random

sorting around the threshold.

To address the sorting of students around the threshold, in Group C we compare

students who scored 3.8 with those who scored 4.1 in their second-lowest subject. This

selected sample has advantages and disadvantages, when compared to Group B. In the

case of Group C, all of the mean differences in observables between students below and

above the threshold have the expected signs, which is consistent with the evidence that

the data is free of manipulation beyond 3.9 and 4. Regarding the disadvantages, we

lose comparability between the groups below and above the threshold, particularly with

respect to student performance. In sum, the remaining differences observed in Group

C are much smaller than the differences observed in Group A and are arguably free of

manipulation. However, they are large enough to suggest the need to complement the

RD design with another approach, to at least control for the differences in observables.
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Table 1: Differences in covariates among different treatments and con-
trol groups

Group A: All

Variable Non Repeaters Repeaters Norm. Dif. Statistic p-value N (Non Rep.) N (Rep.)

Repeated before 2007 0.09 0.29 -0.54 -65.25 0.000 683,972 21,293

Attendance 2006 94.6 92.3 0.38 49.71 0.000 683,972 21,293

Math SIMCE 0.01 -0.89 1.00 154.64 0.000 683,972 21,293

Language SIMCE 0.01 -0.88 0.99 151.55 0.000 683,972 21,293

Mother Education 10.78 9.50 0.37 52.61 0.000 683,972 21,293

Father Education 10.86 9.70 0.32 45.76 0.000 683,972 21,293

Family Income 98,960 74,412 0.28 43.81 0.000 683,972 21,293

Male 0.50 0.64 -0.30 -42.24 0.000 683,972 21,293

Group B: second lowest subject score ∈ {3.9, 4.0}

Variable Mean (= 4.0) Mean (= 3.9) Norm. Dif. Statistic p-value N (= 4.0) N (= 3.9)

Repeated before 2007 0.25 0.20 0.10 2.65 0.008 2,496 885

Attendance 2006 93.5 93.6 -0.02 -0.63 0.528 2,496 885

Math SIMCE -0.58 -0.65 0.08 2.09 0.037 2,496 885

Language SIMCE -0.58 -0.62 0.05 1.28 0.200 2,496 885

Mother Education 10.43 10.29 0.04 1.07 0.283 2,496 885

Father Education 10.54 10.39 0.04 1.08 0.282 2,496 885

Family Income 91,620 95,597 -0.04 -1.08 0.280 2,496 885

Male 0.56 0.60 -0.07 -1.68 0.093 2,496 885

Group C: second lowest subject score ∈ {3.8, 4.1}

Variable Mean (= 4.1) Mean (= 3.8) Norm. Dif. Statistic p-value N (= 4.1) N (= 3.8)

Repeated before 2007 0.21 0.23 -0.05 -2.71 0.007 7,463 3,889

Attendance 2006 93.2 93.1 0.01 0.61 0.540 7,463 3,889

Math SIMCE -0.54 -0.73 0.23 11.89 0.000 7,463 3,889

Language SIMCE -0.57 -0.73 0.19 9.89 0.000 7,463 3,889

Mother Education 10.36 10.17 0.06 2.82 0.005 7,463 3,889

Father Education 10.52 10.40 0.04 1.84 0.065 7,463 3,889

Family Income 88,325 88,132 0.00 0.11 0.913 7,463 3,889

Male 0.57 0.58 -0.00 -0.17 0.865 7,463 3,889

Note: Norm. Dif. is the normalized differences in the means.

3.2 Empirical Approach Using Retention Rule I

By the evidence we have shown about the manipulation, we implement two different

strategies to estimate the effect of grade retention on juvenile crime using Rule I for

grade retention. In the first approach, which takes advantage of the local nature of the

manipulation, we implement a standard fuzzy regression discontinuity design (FRD),

but only using the students who scored 3.8 or 4.1 in their second-lowest score (Group C
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sample, Table 1). This method is known in the literature as the “donut-hole regression

discontinuity”; see Barreca, Guldi, Lindo, and Waddell (2011). In the second approach

(FRD-matching), which addresses the differences in covariates observed in the Group

C sample, we combine FRD with the matching approach, named design matching, de-

veloped by Zubizarreta (2012).17 As can be seen, the key difference between our two

procedures is the definition of the sample used.

Let Yi be a variable that takes the value one if the student committed a crime after

2007 and zero otherwise; Zi a variable that takes the value one if the student’s second-

lowest subject score in 2007 is below the threshold and zero otherwise; Wi a variable that

takes the value one if the student repeats the grade, and zero otherwise; and Xi a set of

covariates of student i. Hence, as is shown in Hahn, Todd, and der Klaauw (2001), when

the sample considered is close to the threshold, the identification of the Local Average

Treatment Effect (LATE) is given by a type of Wald estimator, such that:

τFRD =
E[Y |Z = 1]− E[Y |Z = 0]

E[W |Z = 1]− E[W |Z = 0]
(1)

Furthermore, as pointed out by Imbens and Lemieux (2008), it is possible to obtain

this Wald estimator by implementing a Two Stage Least Square method, where the first

and second stages are described by:

First Stage : Wi = αw
c + αw

z Zi + αw
xXi + εwi , (2)

Second Stage : Yi = αy
c + τFRDŴi + αy

xXi + εyi . (3)

In this context, the instrumental variable estimator of τFRD can be interpreted as

the estimation of the LATE under the assumption of monotonicity (Angrist, Imbens and

Rubin (1994)), which certainly holds in our case 18. In our framework, the monotonicity

assumption would be violated if a student would be promoted to the next grade if his

second-lowest subject score was below the cut-off, but would be retained in the same

grade if his second-lowest subject score was above the cut-off. Thus, using the second-

17This method is an extension of Keele, Titiunik, and Zubizarreta (2015), where the authors combine
sharp regression discontinuity design with matching.

18This method is implemented in Stata using the command ivreg, with robust standard errors. It
should be noted that this method of calculating robust standard errors does not take into account that
the sample to implement the FRD estimation is built using a matching procedure.
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lowest subject score threshold indicator as an instrumental variable produces a consistent

estimation of the effect of Rule I on youth crime for the compliers (see Angrist, Imbens

and Rubin (1994) and Imbens and Rubin (2015)), i.e. the students whose promotion to

the next grade is affected by Rule I of grade retention.

The first empirical approach, the “donut-hole” FRD, is the standard FRD but ex-

cludes students whose second-lowest score is 3.9 or 4. Specifically, the sample consists of

all students who score 3.8 or 4.1 in their second-lowest subject score, and who belong to

a school-cohort with at least one student at each side of the threshold (Group C, Table

1).19 Thus, given this restricted sample, the LATE is obtained by regressing Equations

(2) and (3).

The second empirical approach, the FRD-matching method, has as its starting point

the same sample as the first approach (Group C sample). The difference is that, in order

to address the imbalance in observables between students scoring below and above the

threshold, we use the design matching estimator to build similar groups. Unlike the

standard matching methods, which attempt to achieve covariate balance by minimizing

the total sum of distances between treated units and matched controls, this method

achieves covariate balance directly by minimizing the total sum of distances while con-

straining the measures of imbalance to be less than or equal to certain tolerances. In

our implementation of this matching, we optimally find a pair for each student scoring

3.8, selected from those who are attending the same school-cohort and score 4.1,20 by

minimizing the weighted distance in math and language standardized test scores, par-

ents’ education, previous grade repetitions, attendance during the past year, an income

variable and gender, subject to mean balance on the same set of variables. Details of this

matching approach are described in Appendix B. Then, using this matched sample of

2∗Nbt students,
21 we estimate the LATE by implementing the 2SLS estimator described

by equations (2) and (3).

Table 2 presents the balance achieved by this matching procedure on the mentioned

covariates. Comparing the differences observed in Table 2 with the differences presented

19This means a cohort within a school with at least one student scoring 3.8 and one student scoring
4.1 in the subject with the second-lowest score.

20In one specification, we also implement an exact match in gender.
21Nbt is the number of students who score below the threshold and who have a match – above the

threshold – found by the design matching procedure.
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in Group C in Table 1, it is clear that there is an improvement in terms of balance in

observables.22 However, there is an important reduction in the sample size (from 3889

to 2931 individuals below the threshold).

Table 2: Post-matching differences in covariates

Variable 4.1 3.8 Norm. Dif. Statistic p-value N (= 4.1) N (= 3.8)

Repeated before 2007 0.20 0.20 -0.01 -0.55 0.582 2,959 2,959

Attendance 2006 93.3 93.2 0.02 0.70 0.481 2,959 2,959

Math SIMCE -0.65 -0.68 0.03 1.15 0.248 2,959 2,959

Language SIMCE -0.65 -0.68 0.03 1.28 0.202 2,959 2,959

Mother Education 10.33 10.26 0.02 0.79 0.430 2,959 2,959

Father Education 10.51 10.48 0.01 0.34 0.731 2,959 2,959

Family Income 89,012 88,476 0.01 0.23 0.821 2,959 2,959

Male 0.57 0.58 -0.01 -0.39 0.693 2,959 2,959

Note: Norm. Dif. is the normalized differences in the means.

4 Estimation Strategy Using Retention Rule II

In this section, we explore the validity of implementing an RD design that exploits grade

retention Rule II. Because in this case we do not find evidence of manipulation, we present

procedure developed by Calonico, Cattaneo, and Titiunik (2014b), which implements a

FRD that includes a correction for potential bias.

4.1 Validity of the RD Design: Evidence of no Manipulation

To corroborate that there is no evidence of manipulation in retention when using Reten-

tion Rule II, we implement the same graphical test that we discussed and implemented

in studying Retention Rule I in the previous section. As before, this test takes advantage

of the existence of a standardized test (the SIMCE) that is a non-manipulated measure

of student knowledge. In this case, because we want to study the discontinuity in the

relationship between the standardized test and the GPA, we use a simple average of the

three tests for which we have scores: science, math and Spanish. We define this average

22We also tried to achieve this balance by implementing a more standard matching approach (e.g.,
minimizing the mahalanobis distance). However, in that case, the improvement was only partial, prob-
ably due to the important number of school-cohort clusters for which there are few students scoring 4.1
who qualify as a match for those scoring 3.8.
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as AveSimce. Thus, letting i index students, we run the following OLS regression for

each school s:

AveSimceis = µs
0 + µs

1 ∗GPAis + υis.

As before, to have enough precision in our estimated parameters, we exclude schools

with less than 20 students. We calculate the residual for each student i, such that:

Residualis = AveSimceis − µ̂s
0 − µ̂s

1 ∗GPAis.

In Figure 7, we present the mean of these residuals for each value of GPA. As can be

seen in this figure, as opposed to what we observe using the second-lowest score, there is

no clear discontinuity around 4.45. Because of this, we do not need to exclude the data

that is closest to the threshold as we did when we presented the donut-hole approach.

Figure 7: Test for Local Manipulation (average grade across all sub-
jects)
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Given that we can directly test the existence of manipulation, due to the richness of

our data, we do not need to implement the commonly used indirect test of manipulation

that studies the density of the running variable around the threshold.23

23In the next section, which discusses the results, we also present evidence of the robustness of our
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4.2 Empirical Approach Using Retention Rule II

We implement a standard Fuzzy RD to estimate the effect of grade retention on juvenile

crime using Rule II of grade retention. Before briefly presenting the methodology, some

notation is introduced to define the estimator. Although we cannot use exactly the same

notation as that used in the previous section because of the differences in the grade

retention rules, we introduce notation as similar as possible. The running variable we

employ is the GPA score in 2007, which is denoted by Zi for the i-th individual. Its

cut-off level is denoted by z̄ (which in our scenario is 4.45). As before, the treatment

indicator is Wi, which takes the value one if the i-th student repeats the grade in 2007,

and zero otherwise; and Yi is the observed outcome variable, which takes the value one

if the i-th student commits a crime after 2007 and zero otherwise. Finally, Xi denotes a

vector of covariates of the i-th student.

Thus, as is shown in Imbens and Lemieux (2008), the fuzzy RD estimand is given by:

τFRD =
limz↑z̄ E[Y |Z = z]− limz↓z̄ E[Y |Z = z]

limz↑z̄ E[W |Z = z]− limz↓z̄ E[W |Z = z]
=

τY
τW

.

As mentioned, we follow Calonico, Cattaneo, and Titiunik (2014b) to estimate τFRD

as24:

τ̂FRD(h) =
τ̂Y (h)

τ̂W (h)
,

τ̂Y (h) = α̂Y,−(h)− α̂Y,+(h), τ̂W (h) = α̂W,−(h)− α̂W,+(h),

for a positive bandwidth h, where, for J = Y,W the estimators α̂J,− and α̂J,+ come from

approach by running the procedure developed by Calonico, Cattaneo, and Titiunik (2014), but instead
using our control variables as dependent variables.

24To estimate the fuzzy RD and draw inferences about the parameter of interest, we use the Stata
routine called rdrobust developed by Calonico, Cattaneo, and Titiunik (2014a).
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a standard local-linear RD estimator:




α̂J,−

α̂J,+

β̂J,−

β̂J,+

γ̂J




= argmin
αJ,−,αJ,+,βJ,−,βJ,+,γJ

n∑

i=1

[Ji − 1{Zi<z̄} · (αJ,− + βJ,− · (Zi − z̄))−

1{Zi≥z̄} · (αJ,+ + βJ,+ · (Zi − z̄))− γJ ·Xi]
2 · K

(
Zi−z̄
h

)

h
,

where K(·) is a kernel function. As mentioned, we are able to identify the effect because

the monotonicity assumption holds, and because we are consistently estimating the causal

effect on the compliers. It is also worth mentioning that we have added covariates in the

specification and that, even though they are not required for the identification of τFRD,

they increase the efficiency of the estimator. In the next section, we present results

assuming a triangular kernel, as well as different choices of h equal to 0.1, 0.15, and

0.2.25

Intuitively, the estimator corrects for the potential misspecification bias of τ̂FRD(h),

which may be more significant when including covariates. The bias-corrected estimator

is obtained after removing the estimator of the bias, which is computed through local

polynomials. To draw inferences and calculate confidence intervals for this parameter,

we use both the conventional and the robust nonparametric bias-correction procedures

developed by Calonico, Cattaneo, and Titiunik (2014b) and Calonico, Cattaneo, and

Titiunik (2016). In the latter, the inference is made after calculating the variance of the

bias-corrected estimator: a combination of the variance of the point estimator of τFRD

and the variance of the estimator of the bias.

5 Results Exploiting Retention Rule I

In this section, we present our findings on the impact of grade retention on juvenile crime,

dropping out, and future grade retention. These results come from our first empirical

strategy, which exploits Rule I of grade retention.

25We also used h = 0.05, which delivered point estimators that were even higher but not precise.
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5.1 Effect of Grade Retention on Crime

The main results of this section are presented in Table 3. Focusing on the first two

columns, which summarize the results of our first empirical strategy, we find that the

effect of grade retention on crime ranges from 1.6 to 3.7 pp, and in almost all specifications

the effect is statistically significant.26

Table 3: Effect of grade retention on juvenile crime

(1) (2) (3)

Donut-Hole FRD FRD-Matching OLS
Sample

All 0.016** 0.018** 0.035***
( 0.0068) ( 0.0082) ( 0.0019)
N = 9,681 N = 5,130 N = 705,261

Low SES 0.024** 0.037*** 0.044***

( 0.0120) ( 0.0142) ( 0.0027)
N = 4,527 N = 2,330 N = 359,021

Males 0.024** 0.025* 0.042***
( 0.0114) ( 0.0147) ( 0.0026)
N = 4,187 N = 2,176 N = 353,552

First Repetition 0.011 0.015 0.034***
( 0.0079) ( 0.0097) ( 0.0021)
N = 6,630 N = 3,338 N = 638,582

Note: In the case of FRD-Matching there are Nbt/2 students with their
second-lowest score equal to 3.8 and Nbt/2 students with that score equal to
4.1. Standard errors in parentheses: *** p < 0.01, ** p < 0.05, * p < 0.1.

The effect is heterogeneous and economically significant. The effect is larger for

students from low SES, with an estimated effect twice that obtained for the entire pop-

ulation of students (the probability increases 3.7 pp).27 In terms of gender, the most

affected by the policy are males, with an estimated increase of 2.5 pp for the probability

of committing a crime during the school period. Regarding the magnitudes, given that

the crime rate for the students in this sample is about 4.8%, the estimates range from

an effect of 33% to 77%.28 Lastly, the OLS estimation delivers larger effects (biased

26The difference between the sample size of Columns 1 and 2 is due to the fact that, in Column 1,
most of the time, there is more than one student scoring 4.1 for each student scoring 3.8, which is not
the case in Column 2 (by construction).

27Low SES is defined as the group of students attending schools which fall below the median for a
school’s average income.

28A precautionary note about this range: these population groups also have different crime rates. For
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upward), due to unobservable variables that affect the probability of committing a crime

and that are correlated with repeating a grade (Column (3)). This issue further supports

the soundness of the empirical method developed in this paper (i.e., the FRD-matching).

5.2 Effects of Grade Retention on Other Outcomes

Given our rich panel dataset, we can also examine the effect of grade retention on other

outcomes.29 Specifically, Table 4 shows the effect of repeating the grade in 2007 on the

probability of future grade retention.30 In particular, not being promoted to the next

grade in 2007 decreases the probability of future grade retention from 2.3 to 10.4 pp

(Column (1)). Given that, in the estimation sample, 55% of the students repeat at least

one grade after 2007, our finding represents a decrease ranging from 4.1 to 18.9%.31

example, the male rate is 6.7% (the female rate is 2.2%) and the crime rate for students attending low
SES schools is 6.8%.

29We focus on the donut-Hole RD method, as opposed to FRD-matching, given that this approach
presents the smaller point estimates in the placebo analysis, and it also delivers the smaller effects in
all the estimations.

30Given that there are dropouts, there is a potential selection bias problem that we do not address in
this paper.

31In the estimation sample, 55% of the students repeat at least one grade after 2007, which reflects two
features of the data. First, the grade retention rate is remarkably high in Chile; in fact, the percentage
for the entire population is 39%. Second, low-performing students are overrepresented in the estimation
sample.
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Table 4: Effect of grade retention on future grade retention

(1) (2) (3)

Donut-Hole FRD FRD-Matching OLS
Sample

All -0.082*** -0.059*** 0.116***
( 0.0155) ( 0.0191) ( 0.0035)
N = 9,681 N = 5,130 N = 705,261

Low SES -0.050** -0.023 0.107***
( 0.0221) ( 0.0272) ( 0.0047)
N = 4,527 N = 2,330 N = 359,021

Males -0.104*** -0.096*** 0.111***
( 0.0215) ( 0.0278) ( 0.0044)

N = 4,187 N = 2,176 N = 353,552

First Repetition -0.068*** -0.048** 0.152***
( 0.0189) ( 0.0238) ( 0.0041)
N = 6,630 N = 3,338 N = 638,582

Note: In the case of FRD-Matching there are Nbt/2 students with their
second-lowest score equal to 3.8 and Nbt/2 students with that score equal to
4.1. Standard errors in parentheses: *** p < 0.01, ** p < 0.05, * p < 0.1.

We define dropping out as a situation in which the student does not attend school

in the years corresponding to 11th and 12th grade. For instance, we say that a student

who was attending 4th grade in 2007 dropped out of school if she did not attend school

in 2014 and 2015. Table 5 shows the effects of grade retention on dropping out of school.

As can be seen, repeating a grade in 2007 increases the probability of dropping out of

school by 1.2 to 3.2 pp (Column (1)).32 According to the school dropout measure used

in this paper, 6.3% of the students dropped out after 2007. Thus, our finding represents

an increase ranging from 19 to 51%. We find no effects for those students who repeated

for the first time in 2007.

32These results are along the same lines as the findings of Manacorda (2012) and Jacob and Lefgren
(2009).
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Table 5: Effect of grade retention on dropping out

(1) (2) (3)

Donut-Hole FRD FRD-Matching OLS
Sample

All 0.015* 0.016* 0.059***
( 0.0079) ( 0.0096) ( 0.0023)
N = 9,681 N = 5,130 N = 705,261

Low SES 0.030** 0.032* 0.081***
( 0.0142) ( 0.0174) ( 0.0035)
N = 4,527 N = 2,330 N = 359,021

Males 0.010 0.019 0.057***
( 0.0118) ( 0.0141) ( 0.0029)

N = 4,187 N = 2,176 N = 353,552

First Repetition 0.006 0.003 0.039***
( 0.0076) ( 0.0093) ( 0.0022)
N = 6,630 N = 3,338 N = 638,582

Note: In the case of FRD-Matching there are Nbt/2 students with their
second-lowest score equal to 3.8 and Nbt/2 students with that score equal to
4.1. Standard errors in parentheses: *** p < 0.01, ** p < 0.05, * p < 0.1.

In addition to the discussion on the magnitudes of the effects, there are several aspects

of these results that are important to highlight. First, as in the crime estimation, the OLS

estimation delivers upward-biased effects for the reasons discussed above. Second, the

effect of grade retention on dropping out suggests a relevant mechanism through which

not being promoted to the next grade in school may affect juvenile crime: repeating a

grade has an impact on dropping out, and dropping out has an impact on crime. Third,

if we assume that grade retention in higher grades also has an impact on juvenile crime,

then the results of Table 4 suggest that we are finding a lower bound of the effect, since

those who did not repeat in 2007 (who are non-treated in our estimation) had a higher

probability of repeating a grade in the future, which also has an impact on crime.

5.3 Robustness Analysis

To examine the robustness of our results, we perform two empirical exercises. In the

first one, we re-estimate the “donut-hole” RD and the RD-matching, but now we restrict

the sample to the students whose final status at school is consistent with the retention

rule. In practice, this is equivalent to re-estimating Columns (1) and (2) of Table 3,

but now imposing a sharp RD design. To be clear, we re-estimate the “donut-hole” RD
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specification in two steps: (1) among all students whose second-lowest score is 3.8 or 4.1,

we keep only those students whose final status at school is consistent with the retention

rule: below the threshold, we drop the students who pass the grade, and, above the

threshold, we drop the students who repeat the grade; (2) given this sample, we estimate

a standard sharp design RD, by regressing the following equation:33

Yi = αy
c + τWi + αy

xXi + εyi . (4)

Along the same lines, we re-estimate the RD-matching in two steps: (1) among all

students whose second-lowest score is 3.8 or 4.1, as before, we keep only those students

whose final status at school is consistent with the retention rule; (2) given the matched

sample, the LATE parameter (τ) is estimated by regressing Equation 4.34

The second empirical exercise to review the robustness of our results is to implement

a placebo test. In this case, we replicate the “donut-hole” RD and the RD-matching

estimations, but now we compare only students scoring below and above the threshold

who did not repeat the grade.35 For instance, in the case of the “donut-hole” RD, we

proceed with the following two steps: (1) among all students whose second-lowest score

is 3.8 or 4.1, we keep only those students whose final status at school is pass the grade;

(2) given this sample, we estimate E[Yi|Zi = 0,Wi = 0, Xi] and E[Yi|Zi = 1,Wi = 0, Xi]

by regressing Equation 4. If our empirical approach is valid, we will find that E[Yi|Zi =

0,Wi = 0, Xi] = E[Yi|Zi = 1,Wi = 0, Xi].
36

The results of these empirical exercises are presented in Table 6. In short, the figures

in the first two columns, coming from the re-estimation of the “donut-hole” RD and the

RD-matching (but now imposing a sharp design), are remarkably similar to the results

presented in Table 3. More importantly, the results of the placebo exercises (Columns

(3) and (4)) show no statistical significance. Regarding the magnitudes, although none of

the estimates are statistically significant, Column (4) shows better (closer to zero) point

33Given Step (1), this sample does not require a 2SLS estimator. Indeed, it is a sharp design RD.
34We are using the matched sample described in Table 2, as opposed to finding a new matched sample,

given the smaller number of students scoring below the threshold. These samples would be different
due to the fact that design matching involves constraining the measures of imbalance to be less than or
equal to certain tolerances.

35In principle, we could do the same by comparing those who are below and above the threshold and
repeated the grade. However, we do not have a sufficiently large sample size to do that.

36See Imbens and Rubin (2015).

28



estimates compared to Column (3), i.e., the RD-matching seems more robust than the

“donut-hole” RD. Overall, the placebo results are important because they reinforce our

belief that the numbers presented in Columns (1) and (2) of Table 3 can be interpreted

as (local) causal effects.37

Table 6: Effect of grade retention on juvenile crime (sharp design and
placebo)

Sharp Design Placebo

(1) (2) (3) (4)

Donut-Hole RD RD-Matching Donut-Hole RD RD-Matching
Sample

All 0.015*** 0.018*** 0.002 -0.001
( 0.0058) ( 0.0067) ( 0.0082) ( 0.0081)
N = 8,694 N = 4,421 N = 7,054 N = 3,236

Low SES 0.018* 0.033*** 0.015 0.014
( 0.0102) ( 0.0118) ( 0.0165) ( 0.0166)
N = 4,096 N = 2,040 N = 3,259 N = 1,435

Males 0.021** 0.026** 0.022 0.005
( 0.0101) ( 0.0123) ( 0.0158) ( 0.0168)
N = 3,783 N = 1,910 N = 2,891 N = 1,340

First repetition 0.013 0.016** -0.003 -0.004
( 0.0067) ( 0.0080) ( 0.0097) ( 0.0092)
N = 5,934 N = 2,878 N = 4,782 N = 2,103

Note: In the case of FRD-Matching there are Nbt/2 students with their second lowest
score equal to 3.8 and Nbt/2 students with that score equal to 4.1. Standard errors in
parentheses: *** p < 0.01, ** p < 0.05, * p < 0.1.

Finally, in Appendix C.1, we present the robustness analysis for dropping out and

grade retention after 2007 (Tables 9 and 10). As in the case of crime, in the placebo

test all parameters are statistically insignificant in the case of future grade retention

and dropping out. These results confirm the soundness of our empirical strategy to find

causal estimates.

37That said, it is important to consider that the robustness of our approaches critically depends on
the level of the initial imbalance in observables. For instance, we ran the same placebo approaches,
but compared students who scored 4.1 to students who scored 4.4, and we found differences that were
statistically significant. However, the differences in observables between these two groups (scoring 4.1
and 4.4) were much higher than the differences between the groups that were used in our estimation.
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6 Results Exploiting Retention Rule II

In this section, we present our findings on the impact of grade retention on juvenile

crime, dropping out, and future grade retention. These results are based on an empirical

strategy that implements the fuzzy RD developed by Calonico, Cattaneo, and Titiunik

(described in Subsection 4.2), which exploits the grade retention rule that specifies that

the student has to repeat the grade when she scores below 4 on one subject (≤ 3.9)

and has an average score across all subjects lower than or equal to 4.5. To support our

interpretation as a causal effect, we also show the results of our estimation procedure

when, instead of having crime, dropping out, or future grade retention as our dependent

variable, we consider our control variables as dependent variables.

As in the previous section, we have run our model for different sample groups, namely,

with and without previous grade retention, low SES, and only men. For each of these

sample groups (and their combinations), we have a plot that shows the results for three

different bandwidths (0.1, 0.15, and 0.2). Therefore, we focus our attention on the sample

group that presents more robust results. In particular, we focus on the estimation that

only considers men who did not repeat before 2007. This is the most robust estimation

in the sense that, for this group, we do not find differences in the control variables below

and above the threshold.38

6.1 Impacts on Crime, Future Grade Retention, and Dropping

Out

In Figure 8, we present our estimations for the impact of grade retention on juvenile

crime, for males who did not repeat before 2007. The effect goes from 13 pp to 6 pp,

and in two out of three cases is significantly different from zero. The confidence intervals

(CI) are calculated using the conventional approach. In Appendix D, we show the same

plots but with the robust estimations of the CI developed by Calonico, Cattaneo, and

Titiunik (2014b).39

In Figures 9 and 10, we show the effects of grade retention on future grade retentions

38Most of the results for the other groups are presented in the appendix; the rest can be shared upon
request.

39When the CI are calculated using the robust formula, the significance is lost in some cases; however,
the p-values, although higher, are rather similar.
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and on students dropping out. In the case of future grade retention, we do observe that

grade retention decreases the probability of grade retention in a range of 10 pp to 23 pp,

even though, for one bandwidth, the effect is not significantly different from zero, for a

small margin. However, we do not observe the same strong evidence in the case of the

effect on dropping out.

Figure 8: Effect of grade retention on juvenile crime
(Men who did not repeat before 2007)
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Note: The plot shows the effect of grade retention on crime using
the FRD method that corrects for potential bias. For each bandwidth
value, the point estimation is presented together with the number of
individuals considered in the estimation.
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Figure 9: Effect of grade retention on future grade
retention

(Men who did not repeat before 2007)
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Note: The plot shows the effect of grade retention on future grade
retention using the FRD method that corrects for potential bias. For
each bandwidth value, the point estimation is presented together with
the number of individuals considered in the estimation.

Figure 10: Effect of grade retention on droppping out
(Men who did not repeat before 2007)
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Note: The plot shows the effect of grade retention on dropping out
using the FRD method that corrects for potential bias. For each
bandwidth value, the point estimation is presented, together with the
number of individuals considered in the estimation.
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Overall, the results go in the same direction as the estimations using grade retention

Rule I, with the exception of students dropping out, where the existence of a causal effect

is less clear. However, the current estimations of the effects on crime and on future grade

retention present larger magnitudes and they are less precise in terms of variance. Due to

the latter, we prefer to base our analysis and conclusions on the magnitudes of the first

empirical strategy (exploiting grade retention Rule I). That said, we should emphasize

that the differences in magnitudes between these results and the results based on Rule

I are smaller if we focus our attention on percentage change instead of the change in

percentage points. This is because those students who only repeat because of Rule I

have better outcomes than those who only repeat because of Rule II. Indeed, while the

crime rate of the first group is 4.5%, this figure is 7.3% for the second group.

6.2 Robustness Analysis

To the extent that testing differences in observables around the threshold is an indirect

way to test differences in unobservable variables (Lee and Lemieux (2010)), we study the

robustness of our empirical approach by running the same FRD model but considering

the covariates as dependent variables. To have a more demanding placebo test, in these

cases the estimation is run without the other covariates as control variables. In order to

support our claim about causality, we need to show that our model does not deliver a

statistically significant relationship between grade retention and our covariates, namely,

father’s and mother’s education, math and Spanish test scores, belonging to the low

socioeconomic group, and school attendance in 2006.

The results of this placebo test are presented in Figure 11. Fortunately, in most cases

the estimated parameter is not significantly different from zero, with the exception of

one bandwidth for each test score. The latter is not a surprise because there should

be a close and linear relationship between scores at school and standardized test scores.

What is a surprise, however, is that the stronger relationship shows up at the smaller

bandwidth. We address this issues below. Something to highlight is the fact that, in

almost all cases, the point estimation does not have a monotonic relationship with respect

to the bandwidth. This reinforces the idea that our empirical approach is not finding a

relationship between grade retention and the covariates.
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Figure 11: Placebo estimations with control as dependent variables
(Men who did not repeat before 2007)
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(c) Math Test Scores
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(d) Spanish Test Scores
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(e) Fraction of Low SES
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N=3350

N=5985

N=8559

−
2

0
2

4

.1 .15 .2
Bandwidth

95% confidence interval Point estimation

Note: The plots show the estimation of the FRD procedure but using all the control variables as the dependent variable.
The estimation is run without the other control variables as covariates.
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It is not easy to explain why, in the case of the smallest bandwidth, the effects of grade

retention on all of the outcomes are higher and the placebo test delivers some statistically

significant results. If, as expected, the unobserved variables are more influential as

we move away from the threshold of the running variable and the existence of these

variables biases our estimation upward, we should observe the opposite tendency across

the bandwidths. One way to rationalize these results is thinking about manipulation and

sorting around the threshold. However, as we show in Figure 7, we do not find evidence

supporting that. Although we do not have a clear explanation for this phenomenon,

given these results, we think it is fair to say that our estimations using bandwidths 0.15

and 0.2 are robust and reliable.

In Appendix D, we show the same plots but for different groups and specifications.

Indeed, we present our estimations for different sample groups, namely, men and women

who did not repeat before 2007 and low SES males who did not repeat before 2007.

Moreover, we also present the estimation for all these groups but calculate the CI using

the robust formula. Overall, the results are similar in terms of signs and magnitudes;

however, the statistical significance is less robust. That said, it is remarkable that the

placebo tests are also consistent with the claim of causality.

7 Mechanisms

In this section, we present two exercises to shed some light on what may explain the

impact of grade retention on juvenile crime. First, we explore how grade retention

increases the probability of the occurrence of negative trajectories after 2007. Second,

we discuss the relevance of school switching in reinforcing the negative effect of grade

retention on a student’s future. We do so by focusing our analysis on retention Rule I.

7.1 Interaction Between Crime and Dropping Out of School

The causal effect of grade retention on juvenile crime, documented in the previous sec-

tions, could have operated through different mechanisms. For instance, grade retention

could have had its effect only indirectly, through the effect of repetition on dropping

out, and the subsequent effect of dropping out on crime. To explore what happens after

not being promoted to the next grade and how this event affects students’ trajectories,
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we run a multinomial logit with four trajectories as possible outcomes. The results are

presented in Table 7. The possible trajectories after 2007 are: attending school in all

periods of our sample, without committing a crime during those years (Column (1));

dropping out of school in a year t (after 2007), without committing a crime in a year

t + a, with a > 0 (Column (2)); dropping out of school in a year t (after 2007) and

committing a crime in a year t + a (Column (3)); and committing a crime in a year

t (after 2007) and dropping out of school after that, simultaneously, or never (Column

(4)).

Given the non-linearity of this model, we avoid the use of the score in the second-

lowest subject as the instrument in a fuzzy RD design, and instead we run a multinomial

logit as if we had a sharp RD design. We do so by following the approach described

in Section 5.3, namely, among all students whose second-lowest score is 3.8 or 4.1, we

keep only those students whose final status at school is consistent with the retention

rule. Given this sample, we implement the design matching to optimally find a match

for each student scoring 3.8 among those who score 4.1. Therefore, given this matched

sample, the variable of interest is a dummy that takes the value one if the student was

not promoted to the next grade in 2007, and scored 3.8 in her second-lowest score, and

the value zero if the student was promoted to the next grade in 2007, and scored 4.1 in

the second-lowest score.40 Besides this variable, the model includes the same controls as

the models in the previous section.41

Table 7 shows the marginal effects of this multinomial logit. It can be observed

that grade retention increases the probability of committing a crime after 2007 before

dropping out of school (if the student dropped out) by 1 pp. Overall, the results show

that grade retention increases the probabilities of “bad trajectories” (involving either

crime or dropping out of school) and that the effect of grade retention on crime is not

only through its effects on dropping out. In fact, the effect on delinquency occurring

before (or simultaneously to) dropping out is more relevant than the effect on crime that

occurs after dropping out.

40Even though this approach does not allow for a discussion on causality, because the right approach
would be a FRD, the analysis of the effects of grade retention on crime, dropping out, and grade
retention after 2007 (presented in the previous sections) shows that this fake sharp design RD delivers
rather similar results to the fuzzy RD estimators.

41These are: gender, father’s education, mother’s education, math and language SIMCE, family
income, attendance in 2006, and previous grade retentions.
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Table 7: Effect of grade retention on the probability of different
trajectories

Always at School, Dropout, First Dropout, First crime, then (if so), or
no crime no crime then crime simultaneously, dropout

Grade Retention, -0.0435*** 0.0282*** 0.0053*** 0.0100**

in 2007 ( 0.0118) ( 0.0108) ( 0.0020) ( 0.0048)

Observations = 4,961 Pseudo R2 = 0.11

Note: This is a multinomial logit model with a dependent variable with four categories. The model includes the
following controls: gender, father’s education, mother’s education, math and language SIMCE, family income,
attendance in 2006, previous grade retentions. The table presents the marginal effects. Standard errors in
parentheses: *** p < 0.01, ** p < 0.05, * p < 0.1.

7.2 Switching Schools After Grade Retention

As documented in Hanushek, Kain, and Rivkin (2004), students may experience a sub-

stantial pedagogical cost as a result of switching schools.42 If so, it is possible that part

of the effect of grade retention on crime is due to the fact that not being promoted to

the next grade may increase the probability of switching schools.

To explore the relevance of this mechanism, we run an OLS regression among all

the students who repeated in 2007 and scored between 3.0 and 4.5 on the second-lowest

score.43 We study the correlation between switching schools (between 2007 and 2008)

and juvenile crime, controlling for the same variables as in the models in the previous

sections, and including school-grade fixed effects. Considering that 8th grade presents

a higher rate of students changing schools, we show the results of this model including

and excluding this grade.

Table 8 shows that, for those students who repeated a grade, switching schools in-

creases the probability of crime by 2.2 pp, a result that does not change when 8th grade is

excluded. Thus, in line with the literature, grade retention could be particularly negative

for a student’s future when directly followed by a change in school.

42In the case of Chile, Grau, Hojman, and Mizala (2016) find that a school closing, which always
implies switching schools, increases the probability of grade retention and dropping out.

43We use this set of students to have both a large enough sample size and a group which is similar to
the sample used in Section 6.1.
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Table 8: Crime and switching schools

4th to 8th grade Excluding 8th grade
Variables

Switching school 0.0220*** ( 0.0068) 0.0224*** ( 0.0080)

Attendance 2006 -0.0012** ( 0.0005) -0.0014** ( 0.0006)

Mother Education -0.0018 ( 0.0012) -0.0022* ( 0.0013)

Father Education -0.0019* ( 0.0011) -0.0023* ( 0.0012)

Family Income -0.0000 ( 0.0000) -0.0000 ( 0.0000)

Male 0.0546*** ( 0.0061) 0.0591*** ( 0.0070)

Math SIMCE 0.0008 ( 0.0047) 0.0009 ( 0.0057)

Language SIMCE -0.0011 ( 0.0044) -0.0031 ( 0.0053)

Constant 0.1794*** ( 0.0476) 0.2066*** ( 0.0554)

N 18,946 15,171

R2 0.086 0.093

Note: These two estimations include school-grade fixed effects. Standard
errors in parentheses: *** p < 0.01, ** p < 0.05, * p < 0.1.

8 Conclusion

In this paper, we present strong and robust evidence of a causal relationship between

grade retention and juvenile crime in the case of Chile. To do so, we exploit two disconti-

nuities in the probability of not being promoted to the next grade, which are the results

of the grade retention rules of the Chilean educational system. In the case of the reten-

tion rule that focuses on the second-lowest subject score, due to clear evidence about

local manipulation on the forcing variable, we depart from standard RD methods. First,

we follow Barreca, Guldi, Lindo, and Waddell (2011) to implement a donut-hole FRD,

where, after removing observations in the immediate vicinity of the threshold for grade

repetition, we run a standard FRD. Second, we extend the method developed by Keele,

Titiunik, and Zubizarreta (2015) to combine matching with a fuzzy regression disconti-

nuity design. In the case of the retention rule that focuses on the average grade across

all subjects, we follow a more standard FRD approach, implementing the methodology

developed by Calonico, Cattaneo, and Titiunik (2014b).

This paper makes three main contributions. First, together with a recent paper

(Depew and Eren (2015)), it is the first one that estimates a causal effect of grade

retention on juvenile crime and it is the first such evidence for a developing country. This

causal evidence calls into question the appropriateness of grade repetition as a public
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policy, a concern that is even more relevant in the context of Chile, a developing country

with a high rate of grade retention.44 That said, the interpretation of our findings should

consider that we are not taking into account other aspects of this policy; for example,

the threat of retention could serve as an incentive for all students to exert more effort.

Second, by extending the method developed by Keele, Titiunik, and Zubizarreta (2015)

to the fuzzy RD case, we present an empirical approach that can be useful in many other

contexts in which there is some evidence of manipulation in the forcing variable. Third,

the paper sheds light on the mechanisms that could explain the impact of grade retention

on juvenile crime. From this analysis, it is possible to infer relevant insights for public

policy debates.

Because the impact of grade retention on crime does not only operate through its

effect on dropping out of school, it is not possible to argue that, rather than concern

ourselves with grade retention, we should only start to worry when the student who

has been held back drops out. The evidence presented in this paper implies that pol-

icymakers should be concerned about high levels of grade retention on its own merit.

However, the relevance of the interaction between grade retention and school switching

in the determination of juvenile crime gives important clues about a possible avenue to

attenuate the negative effects of grade retention, in case policymakers decide to continue

supporting this practice. In particular, because repetition is a negative response from the

education system, it may discourage students’ commitment to their educational process.

Thus, it is essential to design policies that will counteract this negative effect, breaking

the connection between grade repetition and other causes of dropping out and juvenile

crime. This is particularly important for those students who have repeated more than

once.

44In fact, in our sample, 13.1% of the students repeated at least one grade between 1st and 8th grade.
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Appendix

A Grading Standards

Figure 12: Heterogenous Grading Standards Across Schools
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B Design Matching

Let Z1 denote the group of students whose second-lowest score in 2007 is below the

threshold (i.e., equal to 3.8), and let Z0 denote the group of students whose second-

lowest score is above the threshold (equal to 4.1).45 Let j1 index the members of group

Z1 and j0 index the members of group Z0. Define dj1,j0 as the covariate distances (in

math and language standardized test scores, parents’ education, previous repetitions,

attendance during the previous year, per capita income, and gender) between unit j1

and j0. To enforce specific forms of covariate balance, define e ∈ ε as the index of the

covariate (school and grade identification) for which it is needed to match exactly, and

be ∈ Be as the categories that covariate e takes, so that xj1;e is the value of nominal

covariate e for unit j1 with xj1;e ∈ Be. Finally, let m ∈ M be the index of covariates for

which it is desired to balance their means, in this case: math and language standardized

45We follow the notation and the description from Keele, Titiunik, and Zubizarreta (2015)
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test scores, parents’ education, previous retentions, attendance during the previous year,

per capita income, and gender. So that xj1;m is the value of covariate m for unit j1, and

xj0;m is the value of covariate m for j0.

To solve the problem optimally, the following decision variables are introduced:

aj1;j0 =





1 if unit j1 is matched to unit j0

0 otherwise,

Then, for a given scalar λ, the objective function to minimize is equal to:46

∑

j1∈Z1,j0∈Z0

dj1,j0aj1,j0 − λ
∑

j1∈Z1,j0∈Z0

aj1,j0, (5)

subject to pair matching and covariate balancing constraints. Under this penalized

match, if distance can be minimized it will be, and if it cannot be minimized in every

case, it will be minimized as often as possible. In particular, the pair matching constraints

require each treated and control subject to be matched at most once,

∑
j0∈Z0

aj1,j0 ≤ 1, ∀j1 ∈ Z1, (6)

∑
j1∈Z1

aj1,j0 ≤ 1, ∀j0 ∈ Z0. (7)

This implies that it matches without replacement. The covariate balancing con-

straints are defined as follows

∑
j1∈Z1,j0∈Z0

∣∣1{xj1;e
=be}xj1;e − 1{xj0;e

=be}xj0;e

∣∣ aj1,j0 = 0, ∀e ∈ ε, (8)

∣∣∣
∑

j1∈Z1,j0∈Z0

aj1;j0(xj1;m − xj0;m)
∣∣∣ ≤ εm

∑
j1∈Z1,j0∈Z0

aj1;j0, ∀m ∈ M, (9)

where 1{·} is the indicator function.

These constraints enforce exact matching and mean balance, respectively. More pre-

cisely, (8) requires exact matching by matching each subject in Z1 to a subject in Z0

46We solve this optimization problem, by implementing the R package described in Zubizarreta and
Kilcioglu (2016).
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in the same school and grade; and (9) forces the differences in means after matching

to be less than or equal to εm = 0.03 standard deviations apart for all m ∈ M , with

M = standardized scores in language and math, parents’ education, previous retentions,

attendance during the previous year, an income variable and gender.

The “Designmatch” incorporates optimal subset matching into the integer program-

ming framework in the objective function (5) via the λ parameter. The first term in

(5) is the total sum of mahalanobis distances between matched pairs, and the second

term is the total number of matched pairs. Therefore, λ emphasizes the total number

of matched pairs in relation to the total sum of distances and, according to (5), it is

preferable to match additional pairs if on average they are at shorter distances than λ.

In our application, we choose λ to be equal to the median mahalanobis distance between

j1 and j0 subjects so, according to (5), it is preferable to match additional pairs if on

average they are at a shorter distance than the typical distance (as measured by the

median).47 Subject to the pair matching constraints (6) and (7) and the covariate bal-

ancing constraints (8) and (9), this form of penalized optimization addresses the lack of

common support problem in the distribution of observed covariates of subject in Z1 and

Z0.

Due to this penalty, the Designmatch keeps the largest number of matched pairs for

which distance is minimized and the balance constraints are satisfied. This implies that

as we alter the distances or the balance constraints, the number of j1 and j0 subjects

retained changes. In particular, for stricter constraints we tend to retain a smaller

number of subjects.

47λ can be thought of as a parametrization of the trade-off between bias and variance: a higher value
of it would imply a bigger sample size, but more differences between treated and controls.
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C Robustness Analysis for the First Empirical Strat-

egy (Rule I)

C.1 Other Outcomes

Table 9: Effect of grade retention on future grade retention (sharp
design and placebo)

Sharp Design Placebo

(1) (2) (3) (4)

Donut-Hole RD RD-Matching Donut-Hole RD RD-Matching
Sample

All -0.087*** -0.060*** 0.006 -0.005
( 0.0129) ( 0.0151) ( 0.0205) ( 0.0212)
N = 8,694 N = 4,421 N = 7,054 N = 3,236

Low SES -0.058*** -0.029 0.022 0.010
( 0.0190) ( 0.0221) ( 0.0321) ( 0.0326)
N = 4,096 N = 2,040 N = 3,259 N = 1,435

Males -0.120*** -0.101*** 0.048 0.007
( 0.0191) ( 0.0227) ( 0.0346) ( 0.0334)
N = 3,783 N = 1,910 N = 2,891 N = 1,340

First repetition -0.078*** -0.045** 0.018 -0.020
( 0.0155) ( 0.0187) ( 0.0250) ( 0.0267)
N = 5,934 N = 2,878 N = 4,782 N = 2,103

Note: In the case of FRD-Matching there are Nbt/2 students with their second lowest
score equal to 3.8 and Nbt/2 students with that score equal to 4.1. Standard errors in
parentheses: *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 10: Effect of grade retention on dropping out (sharp design and
placebo)

Sharp Design Placebo

(1) (2) (3) (4)

Donut-Hole RD RD-Matching Donut-Hole RD RD-Matching
Sample

All 0.017*** 0.020** -0.009 -0.013
( 0.0066) ( 0.0079) ( 0.0095) ( 0.0092)
N = 8,694 N = 4,421 N = 7,054 N = 3,236

Low SES 0.033*** 0.040*** -0.016 -0.025
( 0.0121) ( 0.0146) ( 0.0185) ( 0.0181)
N = 4,096 N = 2,040 N = 3,259 N = 1,435

Males 0.010 0.020* 0.001 -0.006
( 0.0100) ( 0.0117) ( 0.0169) ( 0.0161)
N = 3,783 N = 1,910 N = 2,891 N = 1,340

First repetition 0.006 0.008 0.001 -0.014*
( 0.0065) ( 0.0077) ( 0.0085) ( 0.0081)
N = 5,934 N = 2,878 N = 4,782 N = 2,103

Note: In the case of FRD-Matching there are Nbt/2 students with their second lowest
score equal to 3.8 and Nbt/2 students with that score equal to 4.1. Standard errors in
parentheses: *** p < 0.01, ** p < 0.05, * p < 0.1.
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D Results for Other Sample Groups, Second Empir-

ical Strategy (Rule II)

Figure 13: Effect of grade retention on different outcomes
(Men and women who did not repeat before 2007)
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(b) Future Grade Retention
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(c) Dropping Out

N=6486

N=11000

N=15603

−
.1

5
−

.1
−

.0
5

0
.0

5

.1 .15 .2
Bandwidth

95% confidence interval Point estimation

Note: The plots show the effects of grade retention on different outcomes using the FRD method that corrects for potential
bias. For each bandwidth value, the point estimation is presented together with the number of individuals considered in
the estimation.

45



Figure 14: Placebo estimations with control as dependent variables
(Men and women who did not repeat before 2007)
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Note: The plots show the estimation of the FRD procedure but using all the control variables as the dependent variable.
The estimation is run without the other control variables as covariates.
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Figure 15: Effect of grade retention on different outcomes
(Low SES males who did not repeat before 2007)
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Note: The plots show the effects of grade retention on different outcomes using the FRD method that corrects for potential
bias. For each bandwidth value, the point estimation is presented together with the number of individuals considered in
the estimation.
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Figure 16: Placebo estimations with control as dependent variables
(Low SES males who did not repeat before 2007)
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Note: The plots show the estimation of the FRD procedure but using all the control variables as the dependent variable.
The estimation is run without the other control variables as covariates.
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Figure 17: Effect of grade retention on different outcomes, robust
estimation for C.I

(Men who did not repeat before 2007)
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Note: The plot shows the effect of grade retention on crime using the FRD method that corrects for potential bias.
For each bandwidth value, the point estimation is presented together with the number of individuals considered in the
estimation.
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Figure 18: Placebo estimations with control as dependent variables,
robust estimation for C.I

(Men who did not repeat before 2007)
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Note: The plots show the estimation of the FRD procedure but using all the control variables as the dependent variable.
The estimation is run without the other control variables as covariates.
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Figure 19: Effect of grade retention on different outcomes, robust
estimation for C.I

(Men and women who did not repeat before 2007)
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Note: The plots show the effects of grade retention on different outcomes using the FRD method that corrects for potential
bias. For each bandwidth value, the point estimation is presented together with the number of individuals considered in
the estimation.
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Figure 20: Placebo estimations with control as dependent variables,
robust estimation for C.I.

(Men and women who did not repeat before 2007)
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Note: The plots show the estimation of the FRD procedure but using all the control variables as the dependent variable.
The estimation is run without the other control variables as covariates.
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Figure 21: Effect of grade retention on different outcomes,
robust estimation for C.I.

(Low SES males who did not repeat before 2007)
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Note: The plots show the effects of grade retention on different outcomes using the FRD method that corrects for potential
bias. For each bandwidth value, the point estimation is presented together with the number of individuals considered in
the estimation.
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Figure 22: Placebo estimations with control as dependent variables,
robust estimation for C.I.

(Low SES males who did not repeat before 2007)
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Note: The plots show the estimation of the FRD procedure but using all the control variables as the dependent variable.
The estimation is run without the other control variables as covariates.
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